These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

647 related articles for article (PubMed ID: 16878180)

  • 1. Optical trapping.
    Neuman KC; Block SM
    Rev Sci Instrum; 2004 Sep; 75(9):2787-809. PubMed ID: 16878180
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Nanophotonic trapping: precise manipulation and measurement of biomolecular arrays.
    Baker JE; Badman RP; Wang MD
    Wiley Interdiscip Rev Nanomed Nanobiotechnol; 2018 Jan; 10(1):. PubMed ID: 28439980
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Optical trapping and manipulation of plasmonic nanoparticles: fundamentals, applications, and perspectives.
    Urban AS; Carretero-Palacios S; Lutich AA; Lohmüller T; Feldmann J; Jäckel F
    Nanoscale; 2014 May; 6(9):4458-74. PubMed ID: 24664273
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Optical trapping and binding.
    Bowman RW; Padgett MJ
    Rep Prog Phys; 2013 Feb; 76(2):026401. PubMed ID: 23302540
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Indirect optical trapping using light driven micro-rotors for reconfigurable hydrodynamic manipulation.
    Būtaitė UG; Gibson GM; Ho YD; Taverne M; Taylor JM; Phillips DB
    Nat Commun; 2019 Mar; 10(1):1215. PubMed ID: 30872572
    [TBL] [Abstract][Full Text] [Related]  

  • 6. High-Resolution "Fleezers": Dual-Trap Optical Tweezers Combined with Single-Molecule Fluorescence Detection.
    Whitley KD; Comstock MJ; Chemla YR
    Methods Mol Biol; 2017; 1486():183-256. PubMed ID: 27844430
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Optical manipulation from the microscale to the nanoscale: fundamentals, advances and prospects.
    Gao D; Ding W; Nieto-Vesperinas M; Ding X; Rahman M; Zhang T; Lim C; Qiu CW
    Light Sci Appl; 2017 Sep; 6(9):e17039. PubMed ID: 30167291
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Introduction to Optical Tweezers.
    Koch MD; Shaevitz JW
    Methods Mol Biol; 2017; 1486():3-24. PubMed ID: 27844423
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Introduction to Optical Tweezers: Background, System Designs, and Applications.
    Malinowska AM; van Mameren J; Peterman EJG; Wuite GJL; Heller I
    Methods Mol Biol; 2024; 2694():3-28. PubMed ID: 37823997
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Origin and Future of Plasmonic Optical Tweezers.
    Huang JS; Yang YT
    Nanomaterials (Basel); 2015 Jun; 5(2):1048-1065. PubMed ID: 28347051
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Dynamic formation of optically trapped microstructure arrays for biosensor applications.
    Daria VR; Rodrigo PJ; Glückstad J
    Biosens Bioelectron; 2004 Jun; 19(11):1439-44. PubMed ID: 15093215
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Optical configurations for photophoretic trap of single particles in air.
    Gong Z; Pan YL; Wang C
    Rev Sci Instrum; 2016 Oct; 87(10):103104. PubMed ID: 27802728
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Holographic optical trapping of microrods and nanowires.
    Simpson SH; Hanna S
    J Opt Soc Am A Opt Image Sci Vis; 2010 Jun; 27(6):1255-64. PubMed ID: 20508694
    [TBL] [Abstract][Full Text] [Related]  

  • 14. High-Performance Image-Based Measurements of Biological Forces and Interactions in a Dual Optical Trap.
    Killian JL; Inman JT; Wang MD
    ACS Nano; 2018 Dec; 12(12):11963-11974. PubMed ID: 30457331
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Stand-off trapping and manipulation of sub-10 nm objects and biomolecules using opto-thermo-electrohydrodynamic tweezers.
    Hong C; Yang S; Ndukaife JC
    Nat Nanotechnol; 2020 Nov; 15(11):908-913. PubMed ID: 32868919
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Digital holographic microscopy with coupled optical fiber trap for cell measurement and manipulation.
    Ebrahimi S; Moradi AR; Anand A; Javidi B
    Opt Lett; 2014 May; 39(10):2916-9. PubMed ID: 24978236
    [TBL] [Abstract][Full Text] [Related]  

  • 17. How to calibrate an object-adapted optical trap for force sensing and interferometric shape tracking of asymmetric structures.
    Koch M; Rohrbach A
    Opt Express; 2014 Oct; 22(21):25242-57. PubMed ID: 25401558
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Unraveling the optomechanical nature of plasmonic trapping.
    Mestres P; Berthelot J; Aćimović SS; Quidant R
    Light Sci Appl; 2016 Jul; 5(7):e16092. PubMed ID: 30167173
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Calibration of sound forces in acoustic traps.
    Lee J; Lee C; Shung KK
    IEEE Trans Ultrason Ferroelectr Freq Control; 2010 Oct; 57(10):2305-10. PubMed ID: 20889418
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Detection of forces and displacements along the axial direction in an optical trap.
    Deufel C; Wang MD
    Biophys J; 2006 Jan; 90(2):657-67. PubMed ID: 16258039
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 33.