These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

112 related articles for article (PubMed ID: 16878334)

  • 21. Central carbon metabolism of Saccharomyces cerevisiae in anaerobic, oxygen-limited and fully aerobic steady-state conditions and following a shift to anaerobic conditions.
    Wiebe MG; Rintala E; Tamminen A; Simolin H; Salusjärvi L; Toivari M; Kokkonen JT; Kiuru J; Ketola RA; Jouhten P; Huuskonen A; Maaheimo H; Ruohonen L; Penttilä M
    FEMS Yeast Res; 2008 Feb; 8(1):140-54. PubMed ID: 17425669
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Signal-directed sequential assembly of biomolecules on patterned surfaces.
    Yi H; Wu LQ; Ghodssi R; Rubloff GW; Payne GF; Bentley WE
    Langmuir; 2005 Mar; 21(6):2104-7. PubMed ID: 15751993
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Turning fluorescent dyes into Cu(II) nanosensors.
    Arduini M; Marcuz S; Montolli M; Rampazzo E; Mancin F; Gross S; Armelao L; Tecilla P; Tonellato U
    Langmuir; 2005 Sep; 21(20):9314-21. PubMed ID: 16171367
    [TBL] [Abstract][Full Text] [Related]  

  • 24. A tuneable attractor underlies yeast respiratory dynamics.
    Murray DB; Lloyd D
    Biosystems; 2007; 90(1):287-94. PubMed ID: 17074432
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Energetic and metabolic transient response of Saccharomyces cerevisiae to benzoic acid.
    Kresnowati MT; van Winden WA; van Gulik WM; Heijnen JJ
    FEBS J; 2008 Nov; 275(22):5527-41. PubMed ID: 18959741
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Biomolecule-functionalized nanowires: from nanosensors to nanocarriers.
    Wang J
    Chemphyschem; 2009 Aug; 10(11):1748-55. PubMed ID: 19575484
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Optochemical nanosensor PEBBLEs: photonic explorers for bioanalysis with biologically localized embedding.
    Buck SM; Koo YE; Park E; Xu H; Philbert MA; Brasuel MA; Kopelman R
    Curr Opin Chem Biol; 2004 Oct; 8(5):540-6. PubMed ID: 15450498
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Sensitive single-layered oxygen-sensing systems: polypyridyl ruthenium(II) complexes covalently attached or deposited as langmuir-blodgett monolayer on glass surfaces.
    Chu BW; Yam VW
    Langmuir; 2006 Aug; 22(17):7437-43. PubMed ID: 16893250
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Fiber optic lifetime pH sensing based on ruthenium(II) complexes with dicarboxybipyridine.
    Gonçalves HM; Maule CD; Jorge PA; Esteves da Silva JC
    Anal Chim Acta; 2008 Sep; 626(1):62-70. PubMed ID: 18761122
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Asymmetrically charged carbon nanotubes by controlled functionalization.
    Peng Q; Qu L; Dai L; Park K; Vaia RA
    ACS Nano; 2008 Sep; 2(9):1833-40. PubMed ID: 19206422
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Cell-directed localization and orientation of a functional foreign transmembrane protein within a silica nanostructure.
    Carnes EC; Harper JC; Ashley CE; Lopez DM; Brinker LM; Liu J; Singh S; Brozik SM; Brinker CJ
    J Am Chem Soc; 2009 Oct; 131(40):14255-7. PubMed ID: 19764723
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Nanoscale controlled self-assembled monolayers and quantum dots.
    Shin SK; Yoon HJ; Jung YJ; Park JW
    Curr Opin Chem Biol; 2006 Oct; 10(5):423-9. PubMed ID: 16931110
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Multifunctional ruthenium(II) polypyridine complex-based core-shell magnetic silica nanocomposites: magnetism, luminescence, and electrochemiluminescence.
    Li MJ; Chen Z; Yam VW; Zu Y
    ACS Nano; 2008 May; 2(5):905-12. PubMed ID: 19206487
    [TBL] [Abstract][Full Text] [Related]  

  • 34. The development and in vitro characterisation of an intracellular nanosensor responsive to reactive oxygen species.
    Henderson JR; Fulton DA; McNeil CJ; Manning P
    Biosens Bioelectron; 2009 Aug; 24(12):3608-14. PubMed ID: 19553099
    [TBL] [Abstract][Full Text] [Related]  

  • 35. A chemiluminescence biochemical oxygen demand measuring method.
    Nakamura H; Abe Y; Koizumi R; Suzuki K; Mogi Y; Hirayama T; Karube I
    Anal Chim Acta; 2007 Oct; 602(1):94-100. PubMed ID: 17936112
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Membrane entrapped Saccharomyces cerevisiae in a biosensor-like device as a generic rapid method to study cellular metabolism.
    Martínez M; Hilding-Ohlsson A; Viale AA; Cortón E
    J Biochem Biophys Methods; 2007 Apr; 70(3):455-64. PubMed ID: 17188753
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Biosorption equilibria of binary Cd(II) and Ni(II) systems onto Saccharomyces cerevisiae and Ralstonia eutropha cells: application of response surface methodology.
    Fereidouni M; Daneshi A; Younesi H
    J Hazard Mater; 2009 Sep; 168(2-3):1437-48. PubMed ID: 19443115
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Fluorescent nano-PEBBLE sensors designed for intracellular glucose imaging.
    Xu H; Aylott JW; Kopelman R
    Analyst; 2002 Nov; 127(11):1471-7. PubMed ID: 12475037
    [TBL] [Abstract][Full Text] [Related]  

  • 39. In situ organization of gold nanorods on mixed self-assembled-monolayer substrates.
    Zareie MH; Xu X; Cortie MB
    Small; 2007 Jan; 3(1):139-45. PubMed ID: 17294485
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Budding yeast Saccharomyces cerevisiae as a model to study oxidative modification of proteins in eukaryotes.
    Lushchak VI
    Acta Biochim Pol; 2006; 53(4):679-84. PubMed ID: 17063208
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.