These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
24. Automatic generation of 3D coronary artery centerlines using rotational X-ray angiography. Jandt U; Schäfer D; Grass M; Rasche V Med Image Anal; 2009 Dec; 13(6):846-58. PubMed ID: 19713148 [TBL] [Abstract][Full Text] [Related]
25. Three-dimensional tracking of coronary arteries from biplane angiographic sequences using parametrically deformable models. Sarry L; Boire JY IEEE Trans Med Imaging; 2001 Dec; 20(12):1341-51. PubMed ID: 11811834 [TBL] [Abstract][Full Text] [Related]
26. The impact of acquisition angle differences on three-dimensional quantitative coronary angiography. Tu S; Holm NR; Koning G; Maeng M; Reiber JH Catheter Cardiovasc Interv; 2011 Aug; 78(2):214-22. PubMed ID: 21766427 [TBL] [Abstract][Full Text] [Related]
27. Reconstruction of blood propagation in three-dimensional rotational X-ray angiography (3D-RA). Schmitt H; Grass M; Suurmond R; Köhler T; Rasche V; Hähnel S; Heiland S Comput Med Imaging Graph; 2005 Oct; 29(7):507-20. PubMed ID: 16140501 [TBL] [Abstract][Full Text] [Related]
28. 3-D reconstruction of coronary arterial tree to optimize angiographic visualization. Chen SJ; Carroll JD IEEE Trans Med Imaging; 2000 Apr; 19(4):318-36. PubMed ID: 10909927 [TBL] [Abstract][Full Text] [Related]
29. True reconstruction of vessel geometry from combined X-ray angiographic and intracoronary ultrasound data. Slager CJ; Wentzel JJ; Oomen JA; Schuurbiers JC; Krams R; von Birgelen C; Tjon A; Serruys PW; de Feyter PJ Semin Interv Cardiol; 1997 Mar; 2(1):43-7. PubMed ID: 9546983 [TBL] [Abstract][Full Text] [Related]
30. Using flow information to support 3D vessel reconstruction from rotational angiography. Waechter I; Bredno J; Weese J; Barratt DC; Hawkes DJ Med Phys; 2008 Jul; 35(7):3302-16. PubMed ID: 18697555 [TBL] [Abstract][Full Text] [Related]
31. A multi-stage neural network approach for coronary 3D reconstruction from uncalibrated X-ray angiography images. Iyer K; Nallamothu BK; Figueroa CA; Nadakuditi RR Sci Rep; 2023 Oct; 13(1):17603. PubMed ID: 37845232 [TBL] [Abstract][Full Text] [Related]
32. In-vivo coronary flow profiling based on biplane angiograms: influence of geometric simplifications on the three-dimensional reconstruction and wall shear stress calculation. Wellnhofer E; Goubergrits L; Kertzscher U; Affeld K Biomed Eng Online; 2006 Jun; 5():39. PubMed ID: 16774680 [TBL] [Abstract][Full Text] [Related]
33. External force back-projective composition and globally deformable optimization for 3-D coronary artery reconstruction. Yang J; Cong W; Chen Y; Fan J; Liu Y; Wang Y Phys Med Biol; 2014 Feb; 59(4):975-1003. PubMed ID: 24503518 [TBL] [Abstract][Full Text] [Related]
34. Three-dimensional densitometric reconstruction and visualization of stenosed coronary artery segments. van den Broek JG; Slump CH; Storm CJ; van Benthem AC; Buis B Comput Med Imaging Graph; 1995; 19(2):207-17. PubMed ID: 7780946 [TBL] [Abstract][Full Text] [Related]
35. A method for 3D reconstruction of coronary arteries using biplane angiography and intravascular ultrasound images. Bourantas CV; Kourtis IC; Plissiti ME; Fotiadis DI; Katsouras CS; Papafaklis MI; Michalis LK Comput Med Imaging Graph; 2005 Dec; 29(8):597-606. PubMed ID: 16278063 [TBL] [Abstract][Full Text] [Related]
36. Nonrigid registration-based coronary artery motion correction for cardiac computed tomography. Bhagalia R; Pack JD; Miller JV; Iatrou M Med Phys; 2012 Jul; 39(7):4245-54. PubMed ID: 22830758 [TBL] [Abstract][Full Text] [Related]
37. Automatic generation of time resolved motion vector fields of coronary arteries and 4D surface extraction using rotational x-ray angiography. Jandt U; Schäfer D; Grass M; Rasche V Phys Med Biol; 2009 Jan; 54(1):45-64. PubMed ID: 19060360 [TBL] [Abstract][Full Text] [Related]
38. Accurate and reproducible reconstruction of coronary arteries and endothelial shear stress calculation using 3D OCT: comparative study to 3D IVUS and 3D QCA. Toutouzas K; Chatzizisis YS; Riga M; Giannopoulos A; Antoniadis AP; Tu S; Fujino Y; Mitsouras D; Doulaverakis C; Tsampoulatidis I; Koutkias VG; Bouki K; Li Y; Chouvarda I; Cheimariotis G; Maglaveras N; Kompatsiaris I; Nakamura S; Reiber JH; Rybicki F; Karvounis H; Stefanadis C; Tousoulis D; Giannoglou GD Atherosclerosis; 2015 Jun; 240(2):510-9. PubMed ID: 25932791 [TBL] [Abstract][Full Text] [Related]
39. Validation of the Gatortail method for accurate sizing of pulmonary vessels from 3D medical images. O'Dell WG; Gormaley AK; Prida DA Med Phys; 2017 Dec; 44(12):6314-6328. PubMed ID: 28905390 [TBL] [Abstract][Full Text] [Related]
40. Virtual 3D IVUS vessel model for intravascular brachytherapy planning. I. 3D segmentation, reconstruction, and visualization of coronary artery architecture and orientation. Weichert F; Müller H; Quast U; Kraushaar A; Spilles P; Heintz M; Wilke C; von Birgelen C; Erbel R; Wegener D Med Phys; 2003 Sep; 30(9):2530-6. PubMed ID: 14528975 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]