These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

325 related articles for article (PubMed ID: 16878871)

  • 21. Charge-based particle separation in microfluidic devices using combined hydrodynamic and electrokinetic effects.
    Jellema LC; Mey T; Koster S; Verpoorte E
    Lab Chip; 2009 Jul; 9(13):1914-25. PubMed ID: 19532967
    [TBL] [Abstract][Full Text] [Related]  

  • 22. New advances in microchip fabrication for electrochromatography.
    Székely L; Guttman A
    Electrophoresis; 2005 Dec; 26(24):4590-604. PubMed ID: 16278923
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Filmy channel microchip with amperometric detection.
    Wang W; Fu FF; Xu X; Lin JM; Chen G
    Electrophoresis; 2009 Nov; 30(22):3932-8. PubMed ID: 19885881
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Free flow isotachophoresis in an injection moulded miniaturised separation chamber with integrated electrodes.
    Stone VN; Baldock SJ; Croasdell LA; Dillon LA; Fielden PR; Goddard NJ; Thomas CL; Treves Brown BJ
    J Chromatogr A; 2007 Jul; 1155(2):199-205. PubMed ID: 17229431
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Nanoband electrode for high-performance in-channel amperometric detection in dual-channel microchip capillary electrophoresis.
    Chen C; Teng W; Hahn JH
    Electrophoresis; 2011 Apr; 32(8):838-43. PubMed ID: 21413030
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Fabrication and performance of a three-dimensionally adjustable device for the amperometric detection of microchip capillary electrophoresis.
    Chen G; Bao H; Yang P
    Electrophoresis; 2005 Dec; 26(24):4632-40. PubMed ID: 16278910
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Effects of the cell geometry and operating parameters on the performance of an external contactless conductivity detector for microchip electrophoresis.
    Kubán P; Hauser PC
    Lab Chip; 2005 Apr; 5(4):407-15. PubMed ID: 15791338
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Electrochemical detection method for nonelectroactive and electroactive analytes in microchip electrophoresis.
    Xu JJ; Bao N; Xia XH; Peng Y; Chen HY
    Anal Chem; 2004 Dec; 76(23):6902-7. PubMed ID: 15571339
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Integration of continuous-flow sampling with microchip electrophoresis using poly(dimethylsiloxane)-based valves in a reversibly sealed device.
    Li MW; Martin RS
    Electrophoresis; 2007 Jul; 28(14):2478-88. PubMed ID: 17577199
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Titanium-based dielectrophoresis devices for microfluidic applications.
    Zhang YT; Bottausci F; Rao MP; Parker ER; Mezic I; Macdonald NC
    Biomed Microdevices; 2008 Aug; 10(4):509-17. PubMed ID: 18214682
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Direct electrochemical detection of glucose in human plasma on capillary electrophoresis microchips.
    Du Y; Yan J; Zhou W; Yang X; Wang E
    Electrophoresis; 2004 Nov; 25(21-22):3853-9. PubMed ID: 15565683
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Dual frequency dielectrophoresis with interdigitated sidewall electrodes for microfluidic flow-through separation of beads and cells.
    Wang L; Lu J; Marchenko SA; Monuki ES; Flanagan LA; Lee AP
    Electrophoresis; 2009 Mar; 30(5):782-91. PubMed ID: 19197906
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Low-voltage driven control in electrophoresis microchips by traveling electric field.
    Fu LM; Yang RJ
    Electrophoresis; 2003 Apr; 24(7-8):1253-60. PubMed ID: 12707919
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Flow sandwich-type immunoassay in microfluidic devices based on negative dielectrophoresis.
    Yasukawa T; Suzuki M; Sekiya T; Shiku H; Matsue T
    Biosens Bioelectron; 2007 May; 22(11):2730-6. PubMed ID: 17187978
    [TBL] [Abstract][Full Text] [Related]  

  • 35. On the design and optimization of micro-fluidic dielectrophoretic devices: a dynamic simulation study.
    Li H; Bashir R
    Biomed Microdevices; 2004 Dec; 6(4):289-95. PubMed ID: 15548876
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Design and fabrication of integrated solid-phase extraction-zone electrophoresis microchip.
    Tuomikoski S; Virkkala N; Rovio S; Hokkanen A; Sirén H; Franssila S
    J Chromatogr A; 2006 Apr; 1111(2):258-66. PubMed ID: 16257410
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Fabrication of micro free-flow electrophoresis chip by photocurable monomer binding microfabrication technique for continuous separation of proteins and their numerical simulation.
    Ding H; Li X; Lv X; Xu J; Sun X; Zhang Z; Wang H; Deng Y
    Analyst; 2012 Oct; 137(19):4482-9. PubMed ID: 22874968
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Electrophoretic chip for high-fidelity fractionation of double-stranded DNA.
    Sun K; Li Z; Ueno K; Juodkazis S; Noji S; Misawa H
    Electrophoresis; 2007 May; 28(10):1572-8. PubMed ID: 17492727
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Enhancing dielectrophoresis effect through novel electrode geometry.
    Lin JT; Yeow JT
    Biomed Microdevices; 2007 Dec; 9(6):823-31. PubMed ID: 17574532
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Microchip electrophoresis in low-temperature co-fired ceramics technology with contactless conductivity measurement.
    Fercher G; Smetana W; Vellekoop MJ
    Electrophoresis; 2009 Jul; 30(14):2516-22. PubMed ID: 19588458
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 17.