These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

118 related articles for article (PubMed ID: 16878998)

  • 1. Effects of ligands on the mobility of an active-site loop in tyrosine hydroxylase as monitored by fluorescence anisotropy.
    Sura GR; Lasagna M; Gawandi V; Reinhart GD; Fitzpatrick PF
    Biochemistry; 2006 Aug; 45(31):9632-8. PubMed ID: 16878998
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Insights into the catalytic mechanisms of phenylalanine and tryptophan hydroxylase from kinetic isotope effects on aromatic hydroxylation.
    Pavon JA; Fitzpatrick PF
    Biochemistry; 2006 Sep; 45(36):11030-7. PubMed ID: 16953590
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Phenylalanine residues in the active site of tyrosine hydroxylase: mutagenesis of Phe300 and Phe309 to alanine and metal ion-catalyzed hydroxylation of Phe300.
    Ellis HR; Daubner SC; McCulloch RI; Fitzpatrick PF
    Biochemistry; 1999 Aug; 38(34):10909-14. PubMed ID: 10460145
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Steady-state kinetics and tryptophan fluorescence properties of halohydrin dehalogenase from Agrobacterium radiobacter. Roles of W139 and W249 in the active site and halide-induced conformational change.
    Tang L; van Merode AE; Lutje Spelberg JH; Fraaije MW; Janssen DB
    Biochemistry; 2003 Dec; 42(47):14057-65. PubMed ID: 14636074
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A flexible loop in tyrosine hydroxylase controls coupling of amino acid hydroxylation to tetrahydropterin oxidation.
    Daubner SC; McGinnis JT; Gardner M; Kroboth SL; Morris AR; Fitzpatrick PF
    J Mol Biol; 2006 Jun; 359(2):299-307. PubMed ID: 16618490
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mutation to phenylalanine of tyrosine 371 in tyrosine hydroxylase increases the affinity for phenylalanine.
    Daubner SC; Fitzpatrick PF
    Biochemistry; 1998 Nov; 37(46):16440-4. PubMed ID: 9819237
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Fluorescence spectroscopy as a probe of the effect of phosphorylation at serine 40 of tyrosine hydroxylase on the conformation of its regulatory domain.
    Wang S; Lasagna M; Daubner SC; Reinhart GD; Fitzpatrick PF
    Biochemistry; 2011 Mar; 50(12):2364-70. PubMed ID: 21302933
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Role of tryptophan hydroxylase phe313 in determining substrate specificity.
    Daubner SC; Moran GR; Fitzpatrick PF
    Biochem Biophys Res Commun; 2002 Apr; 292(3):639-41. PubMed ID: 11922614
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Identification of Tyr413 as an active site residue in the flavoprotein tryptophan 2-monooxygenase and analysis of its contribution to catalysis.
    Sobrado P; Fitzpatrick PF
    Biochemistry; 2003 Dec; 42(47):13833-8. PubMed ID: 14636050
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mutagenesis of a specificity-determining residue in tyrosine hydroxylase establishes that the enzyme is a robust phenylalanine hydroxylase but a fragile tyrosine hydroxylase.
    Daubner SC; Avila A; Bailey JO; Barrera D; Bermudez JY; Giles DH; Khan CA; Shaheen N; Thompson JW; Vasquez J; Oxley SP; Fitzpatrick PF
    Biochemistry; 2013 Feb; 52(8):1446-55. PubMed ID: 23368961
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The dynamics of the relay loop tryptophan residue in the Dictyostelium myosin motor domain and the origin of spectroscopic signals.
    Malnasi-Csizmadia A; Kovacs M; Woolley RJ; Botchway SW; Bagshaw CR
    J Biol Chem; 2001 Jun; 276(22):19483-90. PubMed ID: 11278775
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Site-directed mutants of charged residues in the active site of tyrosine hydroxylase.
    Daubner SC; Fitzpatrick PF
    Biochemistry; 1999 Apr; 38(14):4448-54. PubMed ID: 10194366
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Motion of aromatic side chains, picosecond fluorescence, and internal energy transfer in Escherichia coli thioredoxin studied by site-directed mutagenesis, time-resolved fluorescence spectroscopy, and molecular dynamics simulations.
    Elofsson A; Rigler R; Nilsson L; Roslund J; Krause G; Holmgren A
    Biochemistry; 1991 Oct; 30(40):9648-56. PubMed ID: 1911751
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Internal motion of lysozyme studied by time-resolved fluorescence depolarization of tryptophan residues.
    Nishimoto E; Yamashita S; Szabo AG; Imoto T
    Biochemistry; 1998 Apr; 37(16):5599-607. PubMed ID: 9548945
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Metal-induced changes in the fluorescence properties of tyrosine and tryptophan site-specific mutants of oncomodulin.
    Hutnik CM; MacManus JP; Banville D; Szabo AG
    Biochemistry; 1991 Jul; 30(30):7652-60. PubMed ID: 1854760
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effects of substitution of tryptophan 412 in the substrate activation pathway of yeast pyruvate decarboxylase.
    Li H; Jordan F
    Biochemistry; 1999 Aug; 38(31):10004-12. PubMed ID: 10433707
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mechanisms of tryptophan and tyrosine hydroxylase.
    Roberts KM; Fitzpatrick PF
    IUBMB Life; 2013 Apr; 65(4):350-7. PubMed ID: 23441081
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Calcium binding to calmodulin mutants monitored by domain-specific intrinsic phenylalanine and tyrosine fluorescence.
    VanScyoc WS; Sorensen BR; Rusinova E; Laws WR; Ross JB; Shea MA
    Biophys J; 2002 Nov; 83(5):2767-80. PubMed ID: 12414709
    [TBL] [Abstract][Full Text] [Related]  

  • 19. HYSCORE Analysis of the Effects of Substrates on Coordination of Water to the Active Site Iron in Tyrosine Hydroxylase.
    McCracken J; Eser BE; Mannikko D; Krzyaniak MD; Fitzpatrick PF
    Biochemistry; 2015 Jun; 54(24):3759-71. PubMed ID: 26024204
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Photophysics of tryptophan fluorescence: link with the catalytic strategy of the citrate synthase from Thermoplasma acidophilum.
    Kurz LC; Fite B; Jean J; Park J; Erpelding T; Callis P
    Biochemistry; 2005 Feb; 44(5):1394-413. PubMed ID: 15683225
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.