BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

140 related articles for article (PubMed ID: 16879601)

  • 1. Glial fibrillary acidic protein immunoreactivity in the rat suprachiasmatic nucleus: circadian changes and their seasonal dependence.
    Gerics B; Szalay F; Hajós F
    J Anat; 2006 Aug; 209(2):231-7. PubMed ID: 16879601
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Seasonal fluctuations of glial fibrillary acidic protein (GFAP) immunoreactivity in the rat suprachiasmatic nucleus.
    Gerics B; Szalay F; Hajós F
    Acta Biol Hung; 2005; 56(3-4):199-204. PubMed ID: 16196195
    [TBL] [Abstract][Full Text] [Related]  

  • 3. [Mechanisms of structural plasticity associated with photic synchronization of the circadian clock within the suprachiasmatic nucleus].
    Bosler O; Girardet C; Sage-Ciocca D; Jacomy H; François-Bellan AM; Becquet D
    J Soc Biol; 2009; 203(1):49-63. PubMed ID: 19358811
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Ultrastructural plasticity in the rat suprachiasmatic nucleus. Possible involvement in clock entrainment.
    Becquet D; Girardet C; Guillaumond F; François-Bellan AM; Bosler O
    Glia; 2008 Feb; 56(3):294-305. PubMed ID: 18080293
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Excessive testosterone treatment and castration induce reactive astrocytes and fos immunoreactivity in suprachiasmatic nucleus of mice.
    Satriotomo I; Miki T; Gonzalez D; Matsumoto Y; Li HP; Gu H; Takeuchi Y
    Brain Res; 2004 Sep; 1020(1-2):130-9. PubMed ID: 15312794
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Circadian fluctuations in GFAP distribution in the Syrian hamster suprachiasmatic nucleus.
    Lavialle M; Servière J
    Neuroreport; 1993 Sep; 4(11):1243-6. PubMed ID: 8219021
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Suprachiasmatic astrocytes as an interface for immune-circadian signalling.
    Leone MJ; Marpegan L; Bekinschtein TA; Costas MA; Golombek DA
    J Neurosci Res; 2006 Nov; 84(7):1521-7. PubMed ID: 16955486
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Involvement of glial fibrillary acidic protein (GFAP) expressed in astroglial cells in circadian rhythm under constant lighting conditions in mice.
    Moriya T; Yoshinobu Y; Kouzu Y; Katoh A; Gomi H; Ikeda M; Yoshioka T; Itohara S; Shibata S
    J Neurosci Res; 2000 Apr; 60(2):212-8. PubMed ID: 10740226
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Transforming growth factor-alpha and glial fibrillary acidic protein in the hamster circadian system: daily profile and cellular localization.
    Lindley J; Deurveilher S; Rusak B; Semba K
    Brain Res; 2008 Mar; 1197():94-105. PubMed ID: 18242590
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Diurnal oscillation in glial fibrillary acidic protein in a perisuprachiasmatic area and its relationship to the luteinizing hormone surge in the female rat.
    Fernandez-Galaz MC; Martinez Muñoz R; Villanua MA; Garcia-Segura LM
    Neuroendocrinology; 1999 Nov; 70(5):368-76. PubMed ID: 10567863
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Development of astroglial elements in the suprachiasmatic nucleus of the rat: with special reference to the involvement of the optic nerve.
    Munekawa K; Tamada Y; Iijima N; Hayashi S; Ishihara A; Inoue K; Tanaka M; Ibata Y
    Exp Neurol; 2000 Nov; 166(1):44-51. PubMed ID: 11031082
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Serotonergic modulation of astrocytic activity in the hamster suprachiasmatic nucleus.
    Glass JD; Chen L
    Neuroscience; 1999; 94(4):1253-9. PubMed ID: 10625065
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Neuroglial and synaptic rearrangements associated with photic entrainment of the circadian clock in the suprachiasmatic nucleus.
    Girardet C; Becquet D; Blanchard MP; François-Bellan AM; Bosler O
    Eur J Neurosci; 2010 Dec; 32(12):2133-42. PubMed ID: 21143667
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Glial transcripts and immune-challenged glia in the suprachiasmatic nucleus of young and aged mice.
    Deng XH; Bertini G; Palomba M; Xu YZ; Bonaconsa M; Nygård M; Bentivoglio M
    Chronobiol Int; 2010 Jun; 27(4):742-67. PubMed ID: 20560709
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Emergence of circadian and photoperiodic system level properties from interactions among pacemaker cells.
    Beersma DG; van Bunnik BA; Hut RA; Daan S
    J Biol Rhythms; 2008 Aug; 23(4):362-73. PubMed ID: 18663243
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Shedding light on circadian clock resetting by dark exposure: differential effects between diurnal and nocturnal rodents.
    Mendoza J; Revel FG; Pévet P; Challet E
    Eur J Neurosci; 2007 May; 25(10):3080-90. PubMed ID: 17561821
    [TBL] [Abstract][Full Text] [Related]  

  • 17. GFAP expression in astrocytes of suprachiasmatic nucleus and medial preoptic area are differentially affected by malnutrition during rat brain development.
    Mendonça JE; Vilela MC; Bittencourt H; Lapa RM; Oliveira FG; Alessio ML; Guedes RC; De Oliveira Costa MS; Da Costa BL
    Nutr Neurosci; 2004 Aug; 7(4):223-34. PubMed ID: 15682649
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Two brain nuclei controlling circadian rhythms are identified by GFAP immunoreactivity in hamsters and rats.
    Morin LP; Johnson RF; Moore RY
    Neurosci Lett; 1989 Apr; 99(1-2):55-60. PubMed ID: 2664580
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Dark pulse resetting of the suprachiasmatic clock in Syrian hamsters: behavioral phase-shifts and clock gene expression.
    Mendoza JY; Dardente H; Escobar C; Pevet P; Challet E
    Neuroscience; 2004; 127(2):529-37. PubMed ID: 15262341
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Developmental study in the circadian clock of the golden hamster: a putative role of astrocytes.
    Lavialle M; Servière J
    Brain Res Dev Brain Res; 1995 May; 86(1-2):275-82. PubMed ID: 7656420
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.