These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
325 related articles for article (PubMed ID: 16879815)
21. Age-related leaf characteristics of surface features and ultrastructure of Dendropanax morbifera. Kim KW; Koo YK; Yoon CJ J Electron Microsc (Tokyo); 2012 Feb; 61(1):37-46. PubMed ID: 22146140 [TBL] [Abstract][Full Text] [Related]
22. Composition differences between epicuticular and intracuticular wax substructures: how do plants seal their epidermal surfaces? Buschhaus C; Jetter R J Exp Bot; 2011 Jan; 62(3):841-53. PubMed ID: 21193581 [TBL] [Abstract][Full Text] [Related]
23. Cabbage waxes affect Trissolcus brochymenae response to short-range synomones. Frati F; Salerno G; Conti E Insect Sci; 2013 Dec; 20(6):753-62. PubMed ID: 23956054 [TBL] [Abstract][Full Text] [Related]
24. Using electron microscopy to complement X-ray powder diffraction data to solve complex crystal structures. McCusker LB; Baerlocher C Chem Commun (Camb); 2009 Mar; (12):1439-51. PubMed ID: 19277355 [TBL] [Abstract][Full Text] [Related]
25. Effect of epicuticular wax crystals on the localization of artificially deposited sub-micron carbon-based aerosols on needles of Cryptomeria japonica. Nakaba S; Yamane K; Fukahori M; Nugroho WD; Yamaguchi M; Kuroda K; Sano Y; Wuled Lenggoro I; Izuta T; Funada R J Plant Res; 2016 Sep; 129(5):873-881. PubMed ID: 27294967 [TBL] [Abstract][Full Text] [Related]
26. The determination of n-alkanes in the cuticular wax of leaves of Ludwigia adscendens L. Barik A; Bhattacharya B; Laskar S; Banerjee TC Phytochem Anal; 2004; 15(2):109-11. PubMed ID: 15116941 [TBL] [Abstract][Full Text] [Related]
27. Oxidized wax as compatibilizer in linear low-density polyethylene-clay nanocomposites: x-ray diffraction and dynamic mechanical analysis. Geethamma VG; Luyt AS J Nanosci Nanotechnol; 2008 Apr; 8(4):1886-94. PubMed ID: 18572590 [TBL] [Abstract][Full Text] [Related]
28. 3D structure of nematic and columnar phases of hard colloidal platelets. Leferink Op Reinink AB; Meijer JM; Kleshchanok D; Byelov DV; Vroege GJ; Petukhov AV; Lekkerkerker HN J Phys Condens Matter; 2011 May; 23(19):194110. PubMed ID: 21525552 [TBL] [Abstract][Full Text] [Related]
29. Studies on the structure of the plant wax nonacosan-10-ol, the main component of epicuticular wax conifers. Matas AJ; Sanz MJ; Heredia A Int J Biol Macromol; 2003 Nov; 33(1-3):31-5. PubMed ID: 14599581 [TBL] [Abstract][Full Text] [Related]
30. Structural features of reconstituted wheat wax films. Pambou E; Li Z; Campana M; Hughes A; Clifton L; Gutfreund P; Foundling J; Bell G; Lu JR J R Soc Interface; 2016 Jul; 13(120):. PubMed ID: 27466439 [TBL] [Abstract][Full Text] [Related]
31. Self-healing of voids in the wax coating on plant surfaces. Koch K; Bhushan B; Ensikat HJ; Barthlott W Philos Trans A Math Phys Eng Sci; 2009 May; 367(1894):1673-88. PubMed ID: 19376765 [TBL] [Abstract][Full Text] [Related]
32. Reflectance Spectroscopy for Non-Destructive Measurement and Genetic Analysis of Amounts and Types of Epicuticular Waxes on Onion Leaves. Munaiz ED; Townsend PA; Havey MJ Molecules; 2020 Jul; 25(15):. PubMed ID: 32751296 [TBL] [Abstract][Full Text] [Related]
33. The thermotropic phase behaviour and phase structure of a homologous series of racemic beta-D-galactosyl dialkylglycerols studied by differential scanning calorimetry and X-ray diffraction. Mannock DA; Collins MD; Kreichbaum M; Harper PE; Gruner SM; McElhaney RN Chem Phys Lipids; 2007 Jul; 148(1):26-50. PubMed ID: 17524381 [TBL] [Abstract][Full Text] [Related]
34. Major constituents of the foliar epicuticular waxes of species from the Caatinga and Cerrado. Oliveira AF; Salatino A Z Naturforsch C J Biosci; 2000; 55(9-10):688-92. PubMed ID: 11098816 [TBL] [Abstract][Full Text] [Related]
35. Monoterpenes and epicuticular waxes help female autumn gum moth differentiate between waxy and glossy Eucalyptus and leaves of different ages. Steinbauer MJ; Schiestl FP; Davies NW J Chem Ecol; 2004 Jun; 30(6):1117-42. PubMed ID: 15303318 [TBL] [Abstract][Full Text] [Related]
36. Chemical composition of epicuticular wax crystals on the slippery zone in pitchers of five Nepenthes species and hybrids. Riedel M; Eichner A; Meimberg H; Jetter R Planta; 2007 May; 225(6):1517-34. PubMed ID: 17109149 [TBL] [Abstract][Full Text] [Related]
37. The precession technique in electron diffraction and its application to structure determination of nano-size precipitates in alloys. Gjønnes J; Hansen V; Kverneland A Microsc Microanal; 2004 Feb; 10(1):16-20. PubMed ID: 15306062 [TBL] [Abstract][Full Text] [Related]
38. Composition and seasonal variation of soluble cuticular waxes in Actinidia deliciosa leaves. Celano G; D'Auria M; Xiloyannis C; Mauriello G; Baldassarre M Nat Prod Res; 2006 Jul; 20(8):701-9. PubMed ID: 16753901 [TBL] [Abstract][Full Text] [Related]
39. Powder diffraction from a continuous microjet of submicrometer protein crystals. Shapiro DA; Chapman HN; Deponte D; Doak RB; Fromme P; Hembree G; Hunter M; Marchesini S; Schmidt K; Spence J; Starodub D; Weierstall U J Synchrotron Radiat; 2008 Nov; 15(Pt 6):593-9. PubMed ID: 18955765 [TBL] [Abstract][Full Text] [Related]
40. Further characterization of theobroma oil-beeswax admixtures as lipid matrices for improved drug delivery systems. Attama AA; Schicke BC; Müller-Goymann CC Eur J Pharm Biopharm; 2006 Nov; 64(3):294-306. PubMed ID: 16949805 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]