These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

91 related articles for article (PubMed ID: 16879889)

  • 21. Effect of heel height on in-shoe localized triaxial stresses.
    Cong Y; Cheung JT; Leung AK; Zhang M
    J Biomech; 2011 Aug; 44(12):2267-72. PubMed ID: 21705002
    [TBL] [Abstract][Full Text] [Related]  

  • 22. A comparative study of impact dynamics: wobbling mass model versus rigid body models.
    Gruber K; Ruder H; Denoth J; Schneider K
    J Biomech; 1998 May; 31(5):439-44. PubMed ID: 9727341
    [TBL] [Abstract][Full Text] [Related]  

  • 23. The assessment of mechanical and neuromuscular response strategies during landing.
    Caster BL; Bates BT
    Med Sci Sports Exerc; 1995 May; 27(5):736-44. PubMed ID: 7674879
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Heel height affects lower extremity frontal plane joint moments during walking.
    Barkema DD; Derrick TR; Martin PE
    Gait Posture; 2012 Mar; 35(3):483-8. PubMed ID: 22169388
    [TBL] [Abstract][Full Text] [Related]  

  • 25. An objective evaluation of a segmented foot model.
    Okita N; Meyers SA; Challis JH; Sharkey NA
    Gait Posture; 2009 Jul; 30(1):27-34. PubMed ID: 19321344
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Muscle tuning during running: implications of an un-tuned landing.
    Boyer KA; Nigg BM
    J Biomech Eng; 2006 Dec; 128(6):815-22. PubMed ID: 17154680
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Aircraft control forces and EMG activity: comparison of novice and experienced pilots during simulated take-off and landing.
    Hewson DJ; McNair PJ; Marshall RN
    Aviat Space Environ Med; 1999 Aug; 70(8):745-51. PubMed ID: 10447046
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Long distance running increases plantar pressures beneath the metatarsal heads: a barefoot walking investigation of 200 marathon runners.
    Nagel A; Fernholz F; Kibele C; Rosenbaum D
    Gait Posture; 2008 Jan; 27(1):152-5. PubMed ID: 17276688
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Lower extremity biomechanics during the landing of a stop-jump task.
    Yu B; Lin CF; Garrett WE
    Clin Biomech (Bristol, Avon); 2006 Mar; 21(3):297-305. PubMed ID: 16378667
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Orthotic effect of a stabilising mechanism in the surface of gymnastic mats on foot motion during landings.
    Arampatzis A; Morey-Klapsing G; Brüggemann GP
    J Electromyogr Kinesiol; 2005 Oct; 15(5):507-15. PubMed ID: 15935962
    [TBL] [Abstract][Full Text] [Related]  

  • 31. A Comparison of the Habitual Landing Strategies from Differing Drop Heights of Parkour Practitioners (Traceurs) and Recreationally Trained Individuals.
    Standing RJ; Maulder PS
    J Sports Sci Med; 2015 Dec; 14(4):723-31. PubMed ID: 26664268
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Modifying landing mat material properties may decrease peak contact forces but increase forefoot forces in gymnastics landings.
    Mills C; Yeadon MR; Pain MT
    Sports Biomech; 2010 Sep; 9(3):153-64. PubMed ID: 21162361
    [TBL] [Abstract][Full Text] [Related]  

  • 33. The evaluation and prediction of impact forces during landings.
    Dufek JS; Bates BT
    Med Sci Sports Exerc; 1990 Jun; 22(3):370-7. PubMed ID: 2381305
    [TBL] [Abstract][Full Text] [Related]  

  • 34. The influence of energy storage and return foot stiffness on walking mechanics and muscle activity in below-knee amputees.
    Fey NP; Klute GK; Neptune RR
    Clin Biomech (Bristol, Avon); 2011 Dec; 26(10):1025-32. PubMed ID: 21777999
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Estimation of anterior cruciate ligament tension from inverse dynamics data and electromyography in females during drop landing.
    Kernozek TW; Ragan RJ
    Clin Biomech (Bristol, Avon); 2008 Dec; 23(10):1279-86. PubMed ID: 18790553
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Jumping in simulated and true microgravity: response to maximal efforts with three landing types.
    D'Andrea SE; Perusek GP; Rajulu S; Perry J; Davis BL
    Aviat Space Environ Med; 2005 May; 76(5):441-7. PubMed ID: 15892541
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Soft tissue wobbling affects trunk dynamic response in sudden perturbations.
    Bazrgari B; Nussbaum MA; Madigan ML; Shirazi-Adl A
    J Biomech; 2011 Feb; 44(3):547-51. PubMed ID: 20888563
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Hitting a support surface at unexpected height during walking induces loading transients.
    van der Linden MH; Hendricks HT; Bloem BR; Duysens J
    Gait Posture; 2009 Feb; 29(2):255-60. PubMed ID: 18952434
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Component inertia modeling of segmental wobbling and rigid masses.
    Gittoes MJ; Kerwin DG
    J Appl Biomech; 2006 May; 22(2):148-54. PubMed ID: 16871005
    [TBL] [Abstract][Full Text] [Related]  

  • 40. A model-based parametric study of impact force during running.
    Zadpoor AA; Nikooyan AA; Arshi AR
    J Biomech; 2007; 40(9):2012-21. PubMed ID: 17092510
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.