BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

398 related articles for article (PubMed ID: 16880155)

  • 1. A method of quantification of stress shielding in the proximal femur using hierarchical computational modeling.
    Be'ery-Lipperman M; Gefen A
    Comput Methods Biomech Biomed Engin; 2006 Feb; 9(1):35-44. PubMed ID: 16880155
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Primary stability of an anatomical cementless hip stem: a statistical analysis.
    Viceconti M; Brusi G; Pancanti A; Cristofolini L
    J Biomech; 2006; 39(7):1169-79. PubMed ID: 15927191
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Assessment of the fixation stiffness of some femoral stems of different designs.
    Sakai R; Kanai N; Itoman M; Mabuchi K
    Clin Biomech (Bristol, Avon); 2006 May; 21(4):370-8. PubMed ID: 16431001
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Finite element simulation of early creep and wear in total hip arthroplasty.
    Bevill SL; Bevill GR; Penmetsa JR; Petrella AJ; Rullkoetter PJ
    J Biomech; 2005 Dec; 38(12):2365-74. PubMed ID: 16214484
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Problematic sites of third body embedment in polyethylene for total hip wear acceleration.
    Lundberg HJ; Stewart KJ; Pedersen DR; Callaghan JJ; Brown TD
    J Biomech; 2006; 39(7):1208-16. PubMed ID: 15894322
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Long-term study of bone remodelling after femoral stem: a comparison between dexa and finite element simulation.
    Herrera A; Panisello JJ; Ibarz E; Cegoñino J; Puértolas JA; Gracia L
    J Biomech; 2007; 40(16):3615-25. PubMed ID: 17675042
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Comparison of different hip prosthesis shapes considering micro-level bone remodeling and stress-shielding criteria using three-dimensional design space topology optimization.
    Boyle C; Kim IY
    J Biomech; 2011 Jun; 44(9):1722-8. PubMed ID: 21497816
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [Finite element analysis of changes in femoral stresses after elite total hip arthroplasty].
    He RX; Luo YM; Yan SG; Wu HB
    Zhonghua Yi Xue Za Zhi; 2004 Sep; 84(18):1549-53. PubMed ID: 15500718
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Relation between subject-specific hip joint loading, stress distribution in the proximal femur and bone mineral density changes after total hip replacement.
    Jonkers I; Sauwen N; Lenaerts G; Mulier M; Van der Perre G; Jaecques S
    J Biomech; 2008 Dec; 41(16):3405-13. PubMed ID: 19019372
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cortical and interfacial bone changes around a non-cemented hip implant: simulations using a combined strain/damage remodelling algorithm.
    Scannell PT; Prendergast PJ
    Med Eng Phys; 2009 May; 31(4):477-88. PubMed ID: 19188086
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Loss in mechanical contact of cementless acetabular prostheses due to post-operative weight bearing: a biomechanical model.
    Bellini CM; Galbusera F; Ceroni RG; Raimondi MT
    Med Eng Phys; 2007 Mar; 29(2):175-81. PubMed ID: 16569508
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mesh morphing for finite element analysis of implant positioning in cementless total hip replacements.
    Bah MT; Nair PB; Browne M
    Med Eng Phys; 2009 Dec; 31(10):1235-43. PubMed ID: 19744873
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The relationship between stress shielding and bone resorption around total hip stems and the effects of flexible materials.
    Huiskes R; Weinans H; van Rietbergen B
    Clin Orthop Relat Res; 1992 Jan; (274):124-34. PubMed ID: 1728998
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Biphasic constitutive laws for biological interface evolution.
    Büchler P; Pioletti DP; Rakotomanana LR
    Biomech Model Mechanobiol; 2003 Apr; 1(4):239-49. PubMed ID: 14586693
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Bone remodelling inside a cemented resurfaced femoral head.
    Gupta S; New AM; Taylor M
    Clin Biomech (Bristol, Avon); 2006 Jul; 21(6):594-602. PubMed ID: 16542761
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Finite element analysis of a three-dimensional model of a proximal femur-cemented femoral THJR component construct: influence of assigned interface conditions on strain energy density.
    Lewis G; Duggineni R
    Biomed Mater Eng; 2006; 16(5):319-27. PubMed ID: 17075167
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The effect of modular tapered fluted stems on proximal stress shielding in the human femur.
    Hnat WP; Conway JS; Malkani AL; Yakkanti MR; Voor MJ
    J Arthroplasty; 2009 Sep; 24(6):957-62. PubMed ID: 18848422
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Tissue differentiation around a short stemmed metaphyseal loading implant employing a modified mechanoregulatory algorithm: a finite element study.
    Puthumanapully PK; Browne M
    J Orthop Res; 2011 May; 29(5):787-94. PubMed ID: 21437960
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A short plate compression screw with diagonal bolts--a biomechanical evaluation performed experimentally and by numerical computation.
    Peleg E; Mosheiff R; Liebergall M; Mattan Y
    Clin Biomech (Bristol, Avon); 2006 Nov; 21(9):963-8. PubMed ID: 16893595
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [Study on design method for the individual anatomical hip joint endoprosthesis].
    Gong X; Kang L; Wang J
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2008 Feb; 25(1):92-6. PubMed ID: 18435265
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 20.