These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
269 related articles for article (PubMed ID: 16880390)
1. Genome-wide RNAi screening identifies protein damage as a regulator of osmoprotective gene expression. Lamitina T; Huang CG; Strange K Proc Natl Acad Sci U S A; 2006 Aug; 103(32):12173-8. PubMed ID: 16880390 [TBL] [Abstract][Full Text] [Related]
2. Characterization of the proteostasis roles of glycerol accumulation, protein degradation and protein synthesis during osmotic stress in C. elegans. Burkewitz K; Choe KP; Lee EC; Deonarine A; Strange K PLoS One; 2012; 7(3):e34153. PubMed ID: 22470531 [TBL] [Abstract][Full Text] [Related]
3. GCN-2 dependent inhibition of protein synthesis activates osmosensitive gene transcription via WNK and Ste20 kinase signaling. Lee EC; Strange K Am J Physiol Cell Physiol; 2012 Dec; 303(12):C1269-77. PubMed ID: 23076791 [TBL] [Abstract][Full Text] [Related]
4. The Caenorhabditis elegans mucin-like protein OSM-8 negatively regulates osmosensitive physiology via the transmembrane protein PTR-23. Rohlfing AK; Miteva Y; Moronetti L; He L; Lamitina T PLoS Genet; 2011 Jan; 7(1):e1001267. PubMed ID: 21253570 [TBL] [Abstract][Full Text] [Related]
5. Genome-wide RNAi screen and in vivo protein aggregation reporters identify degradation of damaged proteins as an essential hypertonic stress response. Choe KP; Strange K Am J Physiol Cell Physiol; 2008 Dec; 295(6):C1488-98. PubMed ID: 18829898 [TBL] [Abstract][Full Text] [Related]
6. Changes in translation rate modulate stress-induced damage of diverse proteins. Kim H; Strange K Am J Physiol Cell Physiol; 2013 Dec; 305(12):C1257-64. PubMed ID: 24153430 [TBL] [Abstract][Full Text] [Related]
7. Adaptation of the nematode Caenorhabditis elegans to extreme osmotic stress. Lamitina ST; Morrison R; Moeckel GW; Strange K Am J Physiol Cell Physiol; 2004 Apr; 286(4):C785-91. PubMed ID: 14644776 [TBL] [Abstract][Full Text] [Related]
8. RNAi screening for modulators of an osmo-sensitive gene response to extracellular matrix damage reveals negative feedback and interactions with translation inhibition. Chandler LM; Rodriguez M; Choe KP PLoS One; 2023; 18(5):e0285328. PubMed ID: 37155688 [TBL] [Abstract][Full Text] [Related]
9. Functional analysis of the aquaporin gene family in Caenorhabditis elegans. Huang CG; Lamitina T; Agre P; Strange K Am J Physiol Cell Physiol; 2007 May; 292(5):C1867-73. PubMed ID: 17229810 [TBL] [Abstract][Full Text] [Related]
10. Biphasic adaptation to osmotic stress in the Davis M; Montalbano A; Wood MP; Schisa JA Am J Physiol Cell Physiol; 2017 Jun; 312(6):C741-C748. PubMed ID: 28381521 [TBL] [Abstract][Full Text] [Related]
11. Regulation of the hypertonic stress response by the 3' mRNA cleavage and polyadenylation complex. Urso SJ; Sathaseevan A; Brent Derry W; Lamitina T Genetics; 2023 May; 224(1):. PubMed ID: 36972377 [TBL] [Abstract][Full Text] [Related]
12. Identification of a novel gene family involved in osmotic stress response in Caenorhabditis elegans. Wheeler JM; Thomas JH Genetics; 2006 Nov; 174(3):1327-36. PubMed ID: 16980399 [TBL] [Abstract][Full Text] [Related]
13. Transcriptional targets of DAF-16 insulin signaling pathway protect C. elegans from extreme hypertonic stress. Lamitina ST; Strange K Am J Physiol Cell Physiol; 2005 Feb; 288(2):C467-74. PubMed ID: 15496475 [TBL] [Abstract][Full Text] [Related]
14. Abnormal Osmotic Avoidance Behavior in C. elegans Is Associated with Increased Hypertonic Stress Resistance and Improved Proteostasis. Lee EC; Kim H; Ditano J; Manion D; King BL; Strange K PLoS One; 2016; 11(4):e0154156. PubMed ID: 27111894 [TBL] [Abstract][Full Text] [Related]
15. Homeodomain-interacting protein kinase maintains neuronal homeostasis during normal Lazaro-Pena MI; Cornwell AB; Diaz-Balzac CA; Das R; Ward ZC; Macoretta N; Thakar J; Samuelson AV Elife; 2023 Jun; 12():. PubMed ID: 37338980 [TBL] [Abstract][Full Text] [Related]
16. Ubiquitination is involved in secondary growth, not initial formation of polyglutamine protein aggregates in C. elegans. Skibinski GA; Boyd L BMC Cell Biol; 2012 Apr; 13():10. PubMed ID: 22494772 [TBL] [Abstract][Full Text] [Related]
17. Genome-wide RNAi of C. elegans using the hypersensitive rrf-3 strain reveals novel gene functions. Simmer F; Moorman C; van der Linden AM; Kuijk E; van den Berghe PV; Kamath RS; Fraser AG; Ahringer J; Plasterk RH PLoS Biol; 2003 Oct; 1(1):E12. PubMed ID: 14551910 [TBL] [Abstract][Full Text] [Related]
18. Proteasomal dysfunction activates the transcription factor SKN-1 and produces a selective oxidative-stress response in Caenorhabditis elegans. Kahn NW; Rea SL; Moyle S; Kell A; Johnson TE Biochem J; 2008 Jan; 409(1):205-13. PubMed ID: 17714076 [TBL] [Abstract][Full Text] [Related]
19. The JNK-like MAPK KGB-1 of Caenorhabditis elegans promotes reproduction, lifespan, and gene expressions for protein biosynthesis and germline homeostasis but interferes with hyperosmotic stress tolerance. Gerke P; Keshet A; Mertenskötter A; Paul RJ Cell Physiol Biochem; 2014; 34(6):1951-73. PubMed ID: 25500773 [TBL] [Abstract][Full Text] [Related]
20. Physiological and molecular mechanisms of salt and water homeostasis in the nematode Caenorhabditis elegans. Choe KP Am J Physiol Regul Integr Comp Physiol; 2013 Aug; 305(3):R175-86. PubMed ID: 23739341 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]