BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

278 related articles for article (PubMed ID: 16880390)

  • 1. Genome-wide RNAi screening identifies protein damage as a regulator of osmoprotective gene expression.
    Lamitina T; Huang CG; Strange K
    Proc Natl Acad Sci U S A; 2006 Aug; 103(32):12173-8. PubMed ID: 16880390
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Characterization of the proteostasis roles of glycerol accumulation, protein degradation and protein synthesis during osmotic stress in C. elegans.
    Burkewitz K; Choe KP; Lee EC; Deonarine A; Strange K
    PLoS One; 2012; 7(3):e34153. PubMed ID: 22470531
    [TBL] [Abstract][Full Text] [Related]  

  • 3. GCN-2 dependent inhibition of protein synthesis activates osmosensitive gene transcription via WNK and Ste20 kinase signaling.
    Lee EC; Strange K
    Am J Physiol Cell Physiol; 2012 Dec; 303(12):C1269-77. PubMed ID: 23076791
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The Caenorhabditis elegans mucin-like protein OSM-8 negatively regulates osmosensitive physiology via the transmembrane protein PTR-23.
    Rohlfing AK; Miteva Y; Moronetti L; He L; Lamitina T
    PLoS Genet; 2011 Jan; 7(1):e1001267. PubMed ID: 21253570
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Genome-wide RNAi screen and in vivo protein aggregation reporters identify degradation of damaged proteins as an essential hypertonic stress response.
    Choe KP; Strange K
    Am J Physiol Cell Physiol; 2008 Dec; 295(6):C1488-98. PubMed ID: 18829898
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Changes in translation rate modulate stress-induced damage of diverse proteins.
    Kim H; Strange K
    Am J Physiol Cell Physiol; 2013 Dec; 305(12):C1257-64. PubMed ID: 24153430
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Adaptation of the nematode Caenorhabditis elegans to extreme osmotic stress.
    Lamitina ST; Morrison R; Moeckel GW; Strange K
    Am J Physiol Cell Physiol; 2004 Apr; 286(4):C785-91. PubMed ID: 14644776
    [TBL] [Abstract][Full Text] [Related]  

  • 8. RNAi screening for modulators of an osmo-sensitive gene response to extracellular matrix damage reveals negative feedback and interactions with translation inhibition.
    Chandler LM; Rodriguez M; Choe KP
    PLoS One; 2023; 18(5):e0285328. PubMed ID: 37155688
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Functional analysis of the aquaporin gene family in Caenorhabditis elegans.
    Huang CG; Lamitina T; Agre P; Strange K
    Am J Physiol Cell Physiol; 2007 May; 292(5):C1867-73. PubMed ID: 17229810
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Biphasic adaptation to osmotic stress in the
    Davis M; Montalbano A; Wood MP; Schisa JA
    Am J Physiol Cell Physiol; 2017 Jun; 312(6):C741-C748. PubMed ID: 28381521
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Regulation of the hypertonic stress response by the 3' mRNA cleavage and polyadenylation complex.
    Urso SJ; Sathaseevan A; Brent Derry W; Lamitina T
    Genetics; 2023 May; 224(1):. PubMed ID: 36972377
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Identification of a novel gene family involved in osmotic stress response in Caenorhabditis elegans.
    Wheeler JM; Thomas JH
    Genetics; 2006 Nov; 174(3):1327-36. PubMed ID: 16980399
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Transcriptional targets of DAF-16 insulin signaling pathway protect C. elegans from extreme hypertonic stress.
    Lamitina ST; Strange K
    Am J Physiol Cell Physiol; 2005 Feb; 288(2):C467-74. PubMed ID: 15496475
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Abnormal Osmotic Avoidance Behavior in C. elegans Is Associated with Increased Hypertonic Stress Resistance and Improved Proteostasis.
    Lee EC; Kim H; Ditano J; Manion D; King BL; Strange K
    PLoS One; 2016; 11(4):e0154156. PubMed ID: 27111894
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Homeodomain-interacting protein kinase maintains neuronal homeostasis during normal
    Lazaro-Pena MI; Cornwell AB; Diaz-Balzac CA; Das R; Ward ZC; Macoretta N; Thakar J; Samuelson AV
    Elife; 2023 Jun; 12():. PubMed ID: 37338980
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Ubiquitination is involved in secondary growth, not initial formation of polyglutamine protein aggregates in C. elegans.
    Skibinski GA; Boyd L
    BMC Cell Biol; 2012 Apr; 13():10. PubMed ID: 22494772
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Genome-wide RNAi of C. elegans using the hypersensitive rrf-3 strain reveals novel gene functions.
    Simmer F; Moorman C; van der Linden AM; Kuijk E; van den Berghe PV; Kamath RS; Fraser AG; Ahringer J; Plasterk RH
    PLoS Biol; 2003 Oct; 1(1):E12. PubMed ID: 14551910
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Proteasomal dysfunction activates the transcription factor SKN-1 and produces a selective oxidative-stress response in Caenorhabditis elegans.
    Kahn NW; Rea SL; Moyle S; Kell A; Johnson TE
    Biochem J; 2008 Jan; 409(1):205-13. PubMed ID: 17714076
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The JNK-like MAPK KGB-1 of Caenorhabditis elegans promotes reproduction, lifespan, and gene expressions for protein biosynthesis and germline homeostasis but interferes with hyperosmotic stress tolerance.
    Gerke P; Keshet A; Mertenskötter A; Paul RJ
    Cell Physiol Biochem; 2014; 34(6):1951-73. PubMed ID: 25500773
    [TBL] [Abstract][Full Text] [Related]  

  • 20. FLCN and AMPK Confer Resistance to Hyperosmotic Stress via Remodeling of Glycogen Stores.
    Possik E; Ajisebutu A; Manteghi S; Gingras MC; Vijayaraghavan T; Flamand M; Coull B; Schmeisser K; Duchaine T; van Steensel M; Hall DH; Pause A
    PLoS Genet; 2015 Oct; 11(10):e1005520. PubMed ID: 26439621
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.