These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

167 related articles for article (PubMed ID: 16880958)

  • 61. Affinity determination of ricinus communis agglutinin ligands identified from combinatorial O- and S-,N-glycopeptide libraries.
    Maljaars CE; Halkes KM; de Oude WL; Haseley SR; Upton PJ; McDonnell MB; Kamerling JP
    J Comb Chem; 2006; 8(6):812-9. PubMed ID: 17096569
    [TBL] [Abstract][Full Text] [Related]  

  • 62. [Analysis of detecting methods of digoxin blood drug level].
    Li YX; Mao JY; Li HF
    Zhongguo Zhong Yao Za Zhi; 2007 Feb; 32(4):285-8, 326. PubMed ID: 17455457
    [TBL] [Abstract][Full Text] [Related]  

  • 63. [Progress of organometallic complexes and their application to organic electroluminescent materials].
    Zhou R; An ZW; Chai SY
    Guang Pu Xue Yu Guang Pu Fen Xi; 2004 Aug; 24(8):922-6. PubMed ID: 15766108
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Detection of protein tyrosine phosphorylation by open sandwich fluoroimmunoassay.
    Sasajima Y; Aburatani T; Sakamoto K; Ueda H
    Biotechnol Prog; 2006; 22(4):968-73. PubMed ID: 16889371
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Light resonance energy transfer-based methods in the study of G protein-coupled receptor oligomerization.
    Gandía J; Lluís C; Ferré S; Franco R; Ciruela F
    Bioessays; 2008 Jan; 30(1):82-9. PubMed ID: 18081019
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Protein biosensors based on the principle of fluorescence resonance energy transfer for monitoring cellular dynamics.
    Li IT; Pham E; Truong K
    Biotechnol Lett; 2006 Dec; 28(24):1971-82. PubMed ID: 17021660
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Drug evolution concept in drug design: 1. Hybridization method.
    Lazar C; Kluczyk A; Kiyota T; Konishi Y
    J Med Chem; 2004 Dec; 47(27):6973-82. PubMed ID: 15615546
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Direct comparison of fluorescence- and bioluminescence-based resonance energy transfer methods for real-time monitoring of thrombin-catalysed proteolytic cleavage.
    Dacres H; Dumancic MM; Horne I; Trowell SC
    Biosens Bioelectron; 2009 Jan; 24(5):1164-70. PubMed ID: 18723336
    [TBL] [Abstract][Full Text] [Related]  

  • 69. [Trends in chemical libraries for chemical genetics].
    Kawazoe Y; Uesugi M
    Tanpakushitsu Kakusan Koso; 2005 Aug; 50(9):1043-8. PubMed ID: 16083041
    [No Abstract]   [Full Text] [Related]  

  • 70. DNA fragmentation-based combinatorial approaches to soluble protein expression Part I. Generating DNA fragment libraries.
    Prodromou C; Savva R; Driscoll PC
    Drug Discov Today; 2007 Nov; 12(21-22):931-8. PubMed ID: 17993411
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Structure-directed combinatorial library design.
    Zhou JZ
    Curr Opin Chem Biol; 2008 Jun; 12(3):379-85. PubMed ID: 18328830
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Methods for mapping protease specificity.
    Diamond SL
    Curr Opin Chem Biol; 2007 Feb; 11(1):46-51. PubMed ID: 17157549
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Molecular-weight-tagged glycopeptide library: efficient construction and applications.
    Ito H; Kameyama A; Sato T; Kiyohara K; Nakahara Y; Narimatsu H
    Angew Chem Int Ed Engl; 2005 Jul; 44(29):4547-9. PubMed ID: 15981286
    [No Abstract]   [Full Text] [Related]  

  • 74. Bridging the synthetic and biopolymer worlds with peptide-drug conjugates.
    Weiss GA; Chamberlin R
    Chem Biol; 2003 Mar; 10(3):201-2. PubMed ID: 12670531
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Combinatorial peptide ligand libraries as a "Trojan Horse" in deep discovery proteomics.
    Righetti PG; Candiano G; Citterio A; Boschetti E
    Anal Chem; 2015 Jan; 87(1):293-305. PubMed ID: 25084147
    [No Abstract]   [Full Text] [Related]  

  • 76. A triple threat to single molecules.
    Gruebele M
    Nat Methods; 2011 Mar; 8(3):213-5. PubMed ID: 21358623
    [No Abstract]   [Full Text] [Related]  

  • 77. Upconversion fluorescence enables homogeneous immunoassay in whole blood.
    Kuningas K; Päkkilä H; Ukonaho T; Rantanen T; Lövgren T; Soukka T
    Clin Chem; 2007 Jan; 53(1):145-6. PubMed ID: 17202501
    [No Abstract]   [Full Text] [Related]  

  • 78. Automated vs manual profiling of peptide libraries by mass spectrometry.
    Aubagnac JL; Enjalbal C; Martinez J; Sanchez P; Subra G
    Methods Mol Biol; 2004; 251():377-86. PubMed ID: 14704459
    [No Abstract]   [Full Text] [Related]  

  • 79. High-throughput characterisation of materials by photoluminescence spectroscopy.
    Atienzar P; Corma A; García H; Serra JM
    Chemistry; 2004 Nov; 10(23):6043-7. PubMed ID: 15497134
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Split-mix synthesis using macroscopic solid support units.
    Furka A; Christensen JW; Healy E
    Methods Enzymol; 2003; 369():99-112. PubMed ID: 14722949
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.