BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

181 related articles for article (PubMed ID: 16880977)

  • 1. Construction of biotinylated peptide nanotubes for arranging proteins.
    Matsumura S; Uemura S; Mihara H
    Mol Biosyst; 2005 Jul; 1(2):146-8. PubMed ID: 16880977
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Aqueous self-assembly of unsymmetric Peptide bolaamphiphiles into nanofibers with hydrophilic cores and surfaces.
    Claussen RC; Rabatic BM; Stupp SI
    J Am Chem Soc; 2003 Oct; 125(42):12680-1. PubMed ID: 14558795
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Self-assembly of Peptide nanotubes in an organic solvent.
    Krysmann MJ; Castelletto V; McKendrick JE; Clifton LA; W Hamley I; Harris PJ; King SM
    Langmuir; 2008 Aug; 24(15):8158-62. PubMed ID: 18572891
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Self-assembling organic nanotubes based on a cyclic peptide architecture.
    Ghadiri MR; Granja JR; Milligan RA; McRee DE; Khazanovich N
    Nature; 1993 Nov; 366(6453):324-7. PubMed ID: 8247126
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Artificial peptide-nanospheres self-assembled from three-way junctions of beta-sheet-forming peptides.
    Matsuura K; Murasato K; Kimizuka N
    J Am Chem Soc; 2005 Jul; 127(29):10148-9. PubMed ID: 16028908
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Reversible transitions between peptide nanotubes and vesicle-like structures including theoretical modeling studies.
    Yan X; Cui Y; He Q; Wang K; Li J; Mu W; Wang B; Ou-Yang ZC
    Chemistry; 2008; 14(19):5974-80. PubMed ID: 18478616
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Peptide nanofibers modified with a protein by using designed anchor molecules bearing hydrophobic and functional moieties.
    Miyachi A; Takahashi T; Matsumura S; Mihara H
    Chemistry; 2010 Jun; 16(22):6644-50. PubMed ID: 20419712
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Room-temperature Wurtzite ZnS nanocrystal growth on Zn finger-like peptide nanotubes by controlling their unfolding peptide structures.
    Banerjee IA; Yu L; Matsui H
    J Am Chem Soc; 2005 Nov; 127(46):16002-3. PubMed ID: 16287268
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Self-assembling peptide nanotubes from enantiomeric pairs of cyclic peptides with alternating D and L amino acid residues.
    Rosenthal-Aizman K; Svensson G; Undén A
    J Am Chem Soc; 2004 Mar; 126(11):3372-3. PubMed ID: 15025434
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Self-assembly pathway of peptide nanotubes formed by a glutamatic acid-based bolaamphiphile.
    da Silva ER; Alves WA; Castelletto V; Reza M; Ruokolainen J; Hussain R; Hamley IW
    Chem Commun (Camb); 2015 Jul; 51(58):11634-7. PubMed ID: 26094619
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Endowing a ferritin-like cage protein with high affinity and selectivity for certain inorganic materials.
    Sano K; Ajima K; Iwahori K; Yudasaka M; Iijima S; Yamashita I; Shiba K
    Small; 2005 Aug; 1(8-9):826-32. PubMed ID: 17193533
    [No Abstract]   [Full Text] [Related]  

  • 12. Structure and stability of short beta-peptide nanotubes: a non-natural representative of collagen?
    Czajlik A; Beke T; Bottoni A; Perczel A
    J Phys Chem B; 2008 Jul; 112(26):7956-66. PubMed ID: 18543867
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Coupled conformational equilibria in beta-sheet peptide-dendron conjugates.
    Shao H; Lockman JW; Parquette JR
    J Am Chem Soc; 2007 Feb; 129(7):1884-5. PubMed ID: 17256863
    [No Abstract]   [Full Text] [Related]  

  • 14. Rational design of peptide nanotubes for varying diameters and lengths.
    Ueda M; Makino A; Imai T; Sugiyama J; Kimura S
    J Pept Sci; 2011 Feb; 17(2):94-9. PubMed ID: 21234980
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Self assembly of a model amphiphilic phenylalanine peptide/polyethylene glycol block copolymer in aqueous solution.
    Castelletto V; Hamley IW
    Biophys Chem; 2009 May; 141(2-3):169-74. PubMed ID: 19232813
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Self-assembly of multidomain peptides: balancing molecular frustration controls conformation and nanostructure.
    Dong H; Paramonov SE; Aulisa L; Bakota EL; Hartgerink JD
    J Am Chem Soc; 2007 Oct; 129(41):12468-72. PubMed ID: 17894489
    [TBL] [Abstract][Full Text] [Related]  

  • 17. New cyclic peptide assemblies with hydrophobic cavities: the structural and thermodynamic basis of a new class of peptide nanotubes.
    Amorín M; Castedo L; Granja JR
    J Am Chem Soc; 2003 Mar; 125(10):2844-5. PubMed ID: 12617629
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Conductance of alpha-helical peptides trapped within molecular junctions.
    Sek S; Misicka A; Swiatek K; Maicka E
    J Phys Chem B; 2006 Oct; 110(39):19671-7. PubMed ID: 17004836
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Theoretical study on tertiary structural elements of beta-peptides: nanotubes formed from parallel-sheet-derived assemblies of beta-peptides.
    Beke T; Csizmadia IG; Perczel A
    J Am Chem Soc; 2006 Apr; 128(15):5158-67. PubMed ID: 16608352
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Methyl-blocked dimeric alpha,gamma-peptide nanotube segments: formation of a peptide heterodimer through backbone-backbone interactions.
    Brea RJ; Amorín M; Castedo L; Granja JR
    Angew Chem Int Ed Engl; 2005 Sep; 44(35):5710-3. PubMed ID: 16080230
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 10.