These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

144 related articles for article (PubMed ID: 16880986)

  • 1. Xenopus as a model organism in developmental chemical genetic screens.
    Tomlinson ML; Field RA; Wheeler GN
    Mol Biosyst; 2005 Sep; 1(3):223-8. PubMed ID: 16880986
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Use of large-scale expression cloning screens in the Xenopus laevis tadpole to identify gene function.
    Grammer TC; Liu KJ; Mariani FV; Harland RM
    Dev Biol; 2000 Dec; 228(2):197-210. PubMed ID: 11112324
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Chemical genetics and drug discovery in Xenopus.
    Tomlinson ML; Hendry AE; Wheeler GN
    Methods Mol Biol; 2012; 917():155-66. PubMed ID: 22956087
    [TBL] [Abstract][Full Text] [Related]  

  • 4. An ontology for Xenopus anatomy and development.
    Segerdell E; Bowes JB; Pollet N; Vize PD
    BMC Dev Biol; 2008 Sep; 8():92. PubMed ID: 18817563
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Genetic screens for mutations affecting development of Xenopus tropicalis.
    Goda T; Abu-Daya A; Carruthers S; Clark MD; Stemple DL; Zimmerman LB
    PLoS Genet; 2006 Jun; 2(6):e91. PubMed ID: 16789825
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Simple vertebrate models for chemical genetics and drug discovery screens: lessons from zebrafish and Xenopus.
    Wheeler GN; Brändli AW
    Dev Dyn; 2009 Jun; 238(6):1287-308. PubMed ID: 19441060
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Vertebrate model systems in the study of early heart development: Xenopus and zebrafish.
    Lohr JL; Yost HJ
    Am J Med Genet; 2000; 97(4):248-57. PubMed ID: 11376436
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Chemical genomics identifies compounds affecting Xenopus laevis pigment cell development.
    Tomlinson ML; Rejzek M; Fidock M; Field RA; Wheeler GN
    Mol Biosyst; 2009 Apr; 5(4):376-84. PubMed ID: 19396374
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Electroporation-mediated gene transfer in free-swimming embryonic Xenopus laevis.
    Eide FF; Eisenberg SR; Sanders TA
    FEBS Lett; 2000 Dec; 486(1):29-32. PubMed ID: 11108837
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A gynogenetic screen to isolate naturally occurring recessive mutations in Xenopus tropicalis.
    Noramly S; Zimmerman L; Cox A; Aloise R; Fisher M; Grainger RM
    Mech Dev; 2005 Mar; 122(3):273-87. PubMed ID: 15763208
    [TBL] [Abstract][Full Text] [Related]  

  • 11. In pursuit of the functions of the Wnt family of developmental regulators: insights from Xenopus laevis.
    Moon RT
    Bioessays; 1993 Feb; 15(2):91-7. PubMed ID: 8471061
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Visualization of Gene Expression Patterns by In Situ Hybridization on Early Stages of Development of Xenopus laevis.
    El-Hodiri HM; Kelly LE
    Methods Mol Biol; 2018; 1797():325-335. PubMed ID: 29896701
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Developmental expression of the fermitin/kindlin gene family in Xenopus laevis embryos.
    Canning CA; Chan JS; Common JE; Lane EB; Jones CM
    Dev Dyn; 2011 Aug; 240(8):1958-63. PubMed ID: 21761481
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Expression of the adhesion G protein-coupled receptor A2 (adgra2) during Xenopus laevis development.
    Seigfried FA; Dietmann P; Kühl M; Kühl SJ
    Gene Expr Patterns; 2018 Jun; 28():54-61. PubMed ID: 29462671
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Survival fraction and phenotype alterations of Xenopus laevis embryos at 3 Gy, 150 kV X-ray irradiation.
    Carotenuto R; Tussellino M; Mettivier G; Russo P
    Biochem Biophys Res Commun; 2016 Nov; 480(4):580-585. PubMed ID: 27793665
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A versatile protocol for mRNA electroporation of Xenopus laevis embryos.
    Chernet BT; Levin M
    Cold Spring Harb Protoc; 2012 Apr; 2012(4):447-52. PubMed ID: 22474651
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The planar polarity gene strabismus regulates convergent extension movements in Xenopus.
    Darken RS; Scola AM; Rakeman AS; Das G; Mlodzik M; Wilson PA
    EMBO J; 2002 Mar; 21(5):976-85. PubMed ID: 11867525
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Chemical genetic screening in the zebrafish embryo.
    Kaufman CK; White RM; Zon L
    Nat Protoc; 2009; 4(10):1422-32. PubMed ID: 19745824
    [TBL] [Abstract][Full Text] [Related]  

  • 19. DNA methylation at promoter regions regulates the timing of gene activation in Xenopus laevis embryos.
    Stancheva I; El-Maarri O; Walter J; Niveleau A; Meehan RR
    Dev Biol; 2002 Mar; 243(1):155-65. PubMed ID: 11846484
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Heading in a new direction: implications of the revised fate map for understanding Xenopus laevis development.
    Lane MC; Sheets MD
    Dev Biol; 2006 Aug; 296(1):12-28. PubMed ID: 16750823
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.