These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

99 related articles for article (PubMed ID: 168810)

  • 1. Radiation resistance of spores of some Clostridium perfringens strains.
    Clifford WJ; Anellis A
    Appl Microbiol; 1975 Jun; 29(6):861-3. PubMed ID: 168810
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Sensitization of Clostridium perfringens spores to heat by gamma radiation.
    Gombas DE; Gomez RF
    Appl Environ Microbiol; 1978 Sep; 36(3):403-7. PubMed ID: 215084
    [TBL] [Abstract][Full Text] [Related]  

  • 3. RESISTANCE OF CLOSTRIDIUM PERFRINGENS TYPE A SPORES TO GAMMA-RADIATION.
    MIDURA TF; KEMPE LL; GRAIKOSKI JT; MILONE NA
    Appl Microbiol; 1965 Mar; 13(2):244-7. PubMed ID: 14325887
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Role of small, acid-soluble spore proteins in the resistance of Clostridium perfringens spores to chemicals.
    Paredes-Sabja D; Raju D; Torres JA; Sarker MR
    Int J Food Microbiol; 2008 Mar; 122(3):333-5. PubMed ID: 18221812
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Antisense-RNA-mediated decreased synthesis of small, acid-soluble spore proteins leads to decreased resistance of clostridium perfringens spores to moist heat and UV radiation.
    Raju D; Setlow P; Sarker MR
    Appl Environ Microbiol; 2007 Apr; 73(7):2048-53. PubMed ID: 17259355
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Use of power ultrasound to enhance the thermal inactivation of Clostridium perfringens spores in beef slurry.
    Evelyn ; Silva FV
    Int J Food Microbiol; 2015 Aug; 206():17-23. PubMed ID: 25912313
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [Effect of direct sunbeams on spores of Clostridium botulinum and Clostridium perfringens of the types A].
    Mikitiuk PV
    Mikrobiol Zh; 1975; 37(2):152-4. PubMed ID: 175248
    [No Abstract]   [Full Text] [Related]  

  • 8. Near-infrared spectroscopy coupled with chemometrics algorithms for the quantitative determination of the germinability of Clostridium perfringens in four different matrices.
    Zhu Y; Zhang J; Li M; Ren H; Zhu C; Yan L; Zhao G; Zhang Q
    Spectrochim Acta A Mol Biomol Spectrosc; 2020 May; 232():117997. PubMed ID: 32062401
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Reversal of radiation-dependent heat sensitization of Clostridium perfringens spores.
    Gomez RF; Gombas DE; Herrero A
    Appl Environ Microbiol; 1980 Mar; 39(3):525-9. PubMed ID: 6247972
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Low-temperature irradiation of beef and methods of evaluation of radappertization process.
    Anellis A; Shattuck E; Rowley DB; Ross EW; Whaley DN; Dowell VR
    Appl Microbiol; 1975 Nov; 30(5):811-20. PubMed ID: 1106323
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Inactivation of Clostridium perfringens type A spores at ultrahigh temperatures.
    Adams DM
    Appl Microbiol; 1973 Sep; 26(3):282-7. PubMed ID: 4356457
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cryogenic gamma irradiation of prototype pork and chicken and antagonistic effect between Clostridium botulinum types A and B.
    Anellis A; Shattuck E; Morin M; Srisara B; Qvale S; Rowley DB; Ross EW
    Appl Environ Microbiol; 1977 Dec; 34(6):823-31. PubMed ID: 339839
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Sporulation of Clostridium perfringens type A in vacuum-sealed meats.
    Dework FM
    Appl Microbiol; 1972 Nov; 24(5):834-6. PubMed ID: 4344962
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Germination response of spores of the pathogenic bacterium Clostridium perfringens and Clostridium difficile to cultured human epithelial cells.
    Paredes-Sabja D; Sarker MR
    Anaerobe; 2011 Apr; 17(2):78-84. PubMed ID: 21315167
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effect of sublethal heat treatment on the later stage of germination-to-outgrowth of Clostridium perfringens spores.
    Sakanoue H; Yasugi M; Miyake M
    Microbiol Immunol; 2018 Jun; 62(6):418-424. PubMed ID: 29727026
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Survival and growth of enterotoxin-positive and enterotoxin-negative Clostridium perfringens in laboratory media.
    Miwa N; Masuda T; Kwamura A; Terai K; Akiyama M
    Int J Food Microbiol; 2002 Feb; 72(3):233-8. PubMed ID: 11845822
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Heat and radiation resistance and activation of spores of Clostridium welchii.
    Roberts TA
    J Appl Bacteriol; 1968 Mar; 31(1):133-44. PubMed ID: 4296970
    [No Abstract]   [Full Text] [Related]  

  • 18. Inhibitory effects of polyphosphates on Clostridium perfringens growth, sporulation and spore outgrowth.
    Akhtar S; Paredes-Sabja D; Sarker MR
    Food Microbiol; 2008 Sep; 25(6):802-8. PubMed ID: 18620972
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Chitosan inhibits enterotoxigenic Clostridium perfringens type A in growth medium and chicken meat.
    Alnoman M; Udompijitkul P; Sarker MR
    Food Microbiol; 2017 Jun; 64():15-22. PubMed ID: 28213020
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Clostridium perfringens Sporulation and Sporulation-Associated Toxin Production.
    Li J; Paredes-Sabja D; Sarker MR; McClane BA
    Microbiol Spectr; 2016 Jun; 4(3):. PubMed ID: 27337447
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.