BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

130 related articles for article (PubMed ID: 16881004)

  • 1. Anomalous reflection of gold applicable for a practical protein-detecting chip platform.
    Watanabe S; Usui K; Tomizaki KY; Kajikawa K; Mihara H
    Mol Biosyst; 2005 Dec; 1(5-6):363-5. PubMed ID: 16881004
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Poly(amidoamine)-dendrimer-modified gold surfaces for anomalous reflection of gold to detect biomolecular interactions.
    Syahir A; Tomizaki KY; Kajikawa K; Mihara H
    Langmuir; 2009 Apr; 25(6):3667-74. PubMed ID: 19227984
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Surface plasmon resonance imaging analysis of protein-protein interactions using on-chip-expressed capture protein.
    Kim M; Park K; Jeong EJ; Shin YB; Chung BH
    Anal Biochem; 2006 Apr; 351(2):298-304. PubMed ID: 16510110
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Label-free DNA biosensor based on localized surface plasmon resonance coupled with interferometry.
    Kim DK; Kerman K; Saito M; Sathuluri RR; Endo T; Yamamura S; Kwon YS; Tamiya E
    Anal Chem; 2007 Mar; 79(5):1855-64. PubMed ID: 17261024
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Surface plasmon resonance biosensor for biomolecular interaction analysis based on spatial modulation phase detection.
    Ding X; Liu F; Yu X
    Methods Mol Biol; 2009; 503():21-35. PubMed ID: 19151934
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Looking towards label-free biomolecular interaction analysis in a high-throughput format: a review of new surface plasmon resonance technologies.
    Boozer C; Kim G; Cong S; Guan H; Londergan T
    Curr Opin Biotechnol; 2006 Aug; 17(4):400-5. PubMed ID: 16837183
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Label-free optical detection of aptamer-protein interactions using gold-capped oxide nanostructures.
    Kim DK; Kerman K; Hiep HM; Saito M; Yamamura S; Takamura Y; Kwon YS; Tamiya E
    Anal Biochem; 2008 Aug; 379(1):1-7. PubMed ID: 18485275
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Surface plasmon resonance imaging of biomolecular interactions on a grating-based sensor array.
    Singh BK; Hillier AC
    Anal Chem; 2006 Mar; 78(6):2009-18. PubMed ID: 16536440
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Directed self-assembly of gold binding polypeptide-protein A fusion proteins for development of gold nanoparticle-based SPR immunosensors.
    Ko S; Park TJ; Kim HS; Kim JH; Cho YJ
    Biosens Bioelectron; 2009 Apr; 24(8):2592-7. PubMed ID: 19243930
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A novel label-free multi-throughput optical biosensor based on localized surface plasmon resonance.
    Huang H; He C; Zeng Y; Xia X; Yu X; Yi P; Chen Z
    Biosens Bioelectron; 2009 Mar; 24(7):2255-9. PubMed ID: 19042120
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Surface plasmon resonance imaging-based protein array chip system for monitoring a hexahistidine-tagged protein during expression and purification.
    Ro HS; Jung SO; Kho BH; Hong HP; Lee JS; Shin YB; Kim MG; Chung BH
    Appl Environ Microbiol; 2005 Feb; 71(2):1089-92. PubMed ID: 15691971
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Biosensing by optical waveguide spectroscopy based on localized surface plasmon resonance of gold nanoparticles used as a probe or as a label.
    Kajiura M; Nakanishi T; Iida H; Takada H; Osaka T
    J Colloid Interface Sci; 2009 Jul; 335(1):140-5. PubMed ID: 19395015
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Detection and quantification of on-chip phosphorylated peptides by surface plasmon resonance imaging techniques using a phosphate capture molecule.
    Inamori K; Kyo M; Nishiya Y; Inoue Y; Sonoda T; Kinoshita E; Koike T; Katayama Y
    Anal Chem; 2005 Jul; 77(13):3979-85. PubMed ID: 15987100
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Surface plasmon resonance imaging-based protein arrays for high-throughput screening of protein-protein interaction inhibitors.
    Jung SO; Ro HS; Kho BH; Shin YB; Kim MG; Chung BH
    Proteomics; 2005 Nov; 5(17):4427-31. PubMed ID: 16196090
    [TBL] [Abstract][Full Text] [Related]  

  • 15. High-affinity chelator thiols for switchable and oriented immobilization of histidine-tagged proteins: a generic platform for protein chip technologies.
    Tinazli A; Tang J; Valiokas R; Picuric S; Lata S; Piehler J; Liedberg B; Tampé R
    Chemistry; 2005 Sep; 11(18):5249-59. PubMed ID: 15991207
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Localized surface plasmon resonance biosensor integrated with microfluidic chip.
    Huang C; Bonroy K; Reekmans G; Laureyn W; Verhaegen K; De Vlaminck I; Lagae L; Borghs G
    Biomed Microdevices; 2009 Aug; 11(4):893-901. PubMed ID: 19353272
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A novel magnetic bead bioassay platform using a microchip-based sensor for infectious disease diagnosis.
    Aytur T; Foley J; Anwar M; Boser B; Harris E; Beatty PR
    J Immunol Methods; 2006 Jul; 314(1-2):21-9. PubMed ID: 16842813
    [TBL] [Abstract][Full Text] [Related]  

  • 18. SPR imaging of photo-cross-linked small-molecule arrays on gold.
    Kanoh N; Kyo M; Inamori K; Ando A; Asami A; Nakao A; Osada H
    Anal Chem; 2006 Apr; 78(7):2226-30. PubMed ID: 16579601
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Grating-coupled surface plasmon resonance: a cell and protein microarray platform.
    Unfricht DW; Colpitts SL; Fernandez SM; Lynes MA
    Proteomics; 2005 Nov; 5(17):4432-42. PubMed ID: 16222719
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Label-free optical biosensor based on localized surface plasmon resonance of immobilized gold nanorods.
    Huang H; Tang C; Zeng Y; Yu X; Liao B; Xia X; Yi P; Chu PK
    Colloids Surf B Biointerfaces; 2009 Jun; 71(1):96-101. PubMed ID: 19211228
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.