These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

167 related articles for article (PubMed ID: 168815)

  • 1. Observations on the mechanism of the oxygen/dialuric acid-induced hemolysis of vitamin e-deficient rat red blood cells and the protective roles of catalase and superoxide dismutase.
    Fee JA; Bergamini R; Briggs RG
    Arch Biochem Biophys; 1975 Jul; 169(1):160-7. PubMed ID: 168815
    [No Abstract]   [Full Text] [Related]  

  • 2. Hemolysis and membrane lipid changes induced by xanthine oxidase in vitamin E deficient red cells.
    Tamai H; Miki M; Mino M
    J Free Radic Biol Med; 1986; 2(1):49-56. PubMed ID: 3021841
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Role of vitamin E in glutathione-induced oxidant stress: methemoglobin, lipid peroxidation, and hemolysis.
    Brownlee NR; Huttner JJ; Panganamala RV; Cornwell DG
    J Lipid Res; 1977 Sep; 18(5):635-44. PubMed ID: 333049
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Evidence that superoxide dismutase plays a role in protecting red blood cells against peroxidative hemolysis.
    Fee JA; Teitelbaum HD
    Biochem Biophys Res Commun; 1972 Oct; 49(1):150-8. PubMed ID: 5077847
    [No Abstract]   [Full Text] [Related]  

  • 5. Role of the superoxide anion in the myeloperoxidase-mediated antimicrobial system.
    Klebanoff SJ
    J Biol Chem; 1974 Jun; 249(12):3724-8. PubMed ID: 4366184
    [No Abstract]   [Full Text] [Related]  

  • 6. Relative activity of alpha-tocopherol and gamma-tocopherol in preventing oxidative red cell hemolysis.
    Bieri JG; Evarts RP; Gart JJ
    J Nutr; 1976 Jan; 106(1):124-7. PubMed ID: 1245886
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Inhibition by superoxide dismutase and catalase of the damage of isolated Leishmania mexicana amazonensis by phenazine methosulfate.
    Nabi ZF; Rabinovitch M
    Mol Biochem Parasitol; 1984 Mar; 10(3):297-303. PubMed ID: 6328296
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A simple and effective method for hemolysis with a hypoxanthine-xanthine oxidase system and alteration of erythrocyte phospholipid composition during the hemolysis.
    Taniguchi M; Aikawa M; Sakagami T
    J Biochem; 1981 Mar; 89(3):795-800. PubMed ID: 6895220
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Oxidative damage in the red cells of vitamin E-deficient rats.
    Chow CK
    Free Radic Res Commun; 1992; 16(4):247-58. PubMed ID: 1505785
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Xanthine oxidase- and iron-dependent lipid peroxidation.
    Miller DM; Grover TA; Nayini N; Aust SD
    Arch Biochem Biophys; 1993 Feb; 301(1):1-7. PubMed ID: 8382902
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Red cell lysis induced by microorganisms as a case of superoxide- and hydrogen peroxide-dependent hemolysis mediated by oxyhemoglobin.
    Falcioni GC; Coderoni S; Tedeschi GG; Brunori M; Rotilio G
    Biochim Biophys Acta; 1981 Dec; 678(3):437-41. PubMed ID: 6797478
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effect of vitamin E deficiency on the level of superoxide dismutase, glutathione peroxidase, catalase and lipid peroxide in rat liver.
    Masugi F; Nakamura T
    Int J Vitam Nutr Res; 1976; 46(2):187-91. PubMed ID: 1032631
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Oxygen-derived free radicals, endothelium, and responsiveness of vascular smooth muscle.
    Rubanyi GM; Vanhoutte PM
    Am J Physiol; 1986 May; 250(5 Pt 2):H815-21. PubMed ID: 3085520
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Changes in membrane constituents and chemiluminescence in vitamin E-deficient red blood cells induced by the xanthine oxidase reaction.
    Yasuda H; Miki M; Takenaka Y; Tamai H; Mino M
    Arch Biochem Biophys; 1989 Jul; 272(1):81-7. PubMed ID: 2544145
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The generation of hydrogen peroxide, superoxide radical, and hydroxyl radical by 6-hydroxydopamine, dialuric acid, and related cytotoxic agents.
    Cohen G; Heikkila RE
    J Biol Chem; 1974 Apr; 249(8):2447-52. PubMed ID: 4362682
    [No Abstract]   [Full Text] [Related]  

  • 16. Amelioration of glucose induced hemolysis of human erythrocytes by vitamin E.
    Marar T
    Chem Biol Interact; 2011 Sep; 193(2):149-53. PubMed ID: 21736874
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Reactive oxygen metabolite-induced toxicity to cultured bovine endothelial cells: status of cellular iron in mediating injury.
    Hiraishi H; Terano A; Razandi M; Pedram A; Sugimoto T; Harada T; Ivey KJ
    J Cell Physiol; 1994 Jul; 160(1):132-4. PubMed ID: 8021293
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Changes of alpha-tocopherol levels in red blood cells and plasma with respect to hemolysis induced by dialuric acid in vitamin E-deficient rats.
    Mino M; Kitagawa M; Nakagawa S
    J Nutr Sci Vitaminol (Tokyo); 1981; 27(3):199-207. PubMed ID: 7288514
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Biological defense mechanisms. Evidence for the participation of superoxide in bacterial killing by xanthine oxidase.
    Babior BM; Curnutte JT; Kipnes RS
    J Lab Clin Med; 1975 Feb; 85(2):235-44. PubMed ID: 1089740
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Studies on peroxidative hemolysis and erythrocyte fatty acids in the rabbit: effect of dietary PUFA and vitamin E.
    Horn LR; Barker MO; Reed G; Brin M
    J Nutr; 1974 Feb; 104(2):192-201. PubMed ID: 4810980
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 9.