These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
89 related articles for article (PubMed ID: 16881654)
1. Supramolecular catalysis of unimolecular rearrangements: substrate scope and mechanistic insights. Fiedler D; van Halbeek H; Bergman RG; Raymond KN J Am Chem Soc; 2006 Aug; 128(31):10240-52. PubMed ID: 16881654 [TBL] [Abstract][Full Text] [Related]
2. Proton-mediated chemistry and catalysis in a self-assembled supramolecular host. Pluth MD; Bergman RG; Raymond KN Acc Chem Res; 2009 Oct; 42(10):1650-9. PubMed ID: 19591461 [TBL] [Abstract][Full Text] [Related]
3. Enantioselective catalysis of the aza-Cope rearrangement by a chiral supramolecular assembly. Brown CJ; Bergman RG; Raymond KN J Am Chem Soc; 2009 Dec; 131(48):17530-1. PubMed ID: 19950985 [TBL] [Abstract][Full Text] [Related]
4. Aza Cope rearrangement of propargyl enammonium cations catalyzed by a self-assembled "nanozyme". Hastings CJ; Fiedler D; Bergman RG; Raymond KN J Am Chem Soc; 2008 Aug; 130(33):10977-83. PubMed ID: 18652468 [TBL] [Abstract][Full Text] [Related]
5. Selective molecular recognition, C-H bond activation, and catalysis in nanoscale reaction vessels. Fiedler D; Leung DH; Bergman RG; Raymond KN Acc Chem Res; 2005 Apr; 38(4):349-58. PubMed ID: 15835881 [TBL] [Abstract][Full Text] [Related]
6. Acid catalysis in basic solution: a supramolecular host promotes orthoformate hydrolysis. Pluth MD; Bergman RG; Raymond KN Science; 2007 Apr; 316(5821):85-8. PubMed ID: 17412953 [TBL] [Abstract][Full Text] [Related]
7. Supramolecular catalysis of orthoformate hydrolysis in basic solution: an enzyme-like mechanism. Pluth MD; Bergman RG; Raymond KN J Am Chem Soc; 2008 Aug; 130(34):11423-9. PubMed ID: 18680290 [TBL] [Abstract][Full Text] [Related]
8. Alternative catalytic anions differentially modulate human alpha-amylase activity and specificity. Maurus R; Begum A; Williams LK; Fredriksen JR; Zhang R; Withers SG; Brayer GD Biochemistry; 2008 Mar; 47(11):3332-44. PubMed ID: 18284212 [TBL] [Abstract][Full Text] [Related]
9. Structural consequences of anionic host-cationic guest interactions in a supramolecular assembly. Pluth MD; Johnson DW; Szigethy G; Davis AV; Teat SJ; Oliver AG; Bergman RG; Raymond KN Inorg Chem; 2009 Jan; 48(1):111-20. PubMed ID: 19053347 [TBL] [Abstract][Full Text] [Related]
10. Supramolecular bidentate ligands by metal-directed in situ formation of antiparallel beta-sheet structures and application in asymmetric catalysis. Laungani AC; Slattery JM; Krossing I; Breit B Chemistry; 2008; 14(15):4488-502. PubMed ID: 18449870 [TBL] [Abstract][Full Text] [Related]
11. Structural flexibility enhances the reactivity of the bioremediator glycerophosphodiesterase by fine-tuning its mechanism of hydrolysis. Hadler KS; Mitić N; Ely F; Hanson GR; Gahan LR; Larrabee JA; Ollis DL; Schenk G J Am Chem Soc; 2009 Aug; 131(33):11900-8. PubMed ID: 19653693 [TBL] [Abstract][Full Text] [Related]
12. The acid hydrolysis mechanism of acetals catalyzed by a supramolecular assembly in basic solution. Pluth MD; Bergman RG; Raymond KN J Org Chem; 2009 Jan; 74(1):58-63. PubMed ID: 19113901 [TBL] [Abstract][Full Text] [Related]
13. Metal-organic cooperative catalysis in C-H and C-C bond activation and its concurrent recovery. Park YJ; Park JW; Jun CH Acc Chem Res; 2008 Feb; 41(2):222-34. PubMed ID: 18247521 [TBL] [Abstract][Full Text] [Related]
14. Iminium Catalysis inside a Self-Assembled Supramolecular Capsule: Scope and Mechanistic Studies. Bräuer TM; Zhang Q; Tiefenbacher K J Am Chem Soc; 2017 Dec; 139(48):17500-17507. PubMed ID: 29090917 [TBL] [Abstract][Full Text] [Related]
15. Kinetic and mutational studies of the number of interacting divalent cations required by bacterial and human methionine aminopeptidases. Hu XV; Chen X; Han KC; Mildvan AS; Liu JO Biochemistry; 2007 Nov; 46(44):12833-43. PubMed ID: 17929833 [TBL] [Abstract][Full Text] [Related]
16. Consequences of acid strength for isomerization and elimination catalysis on solid acids. Macht J; Carr RT; Iglesia E J Am Chem Soc; 2009 May; 131(18):6554-65. PubMed ID: 19374417 [TBL] [Abstract][Full Text] [Related]
17. Making amines strong bases: thermodynamic stabilization of protonated guests in a highly-charged supramolecular host1. Pluth MD; Bergman RG; Raymond KN J Am Chem Soc; 2007 Sep; 129(37):11459-67. PubMed ID: 17713905 [TBL] [Abstract][Full Text] [Related]
18. Peptide mimics by linear arylamides: a structural and functional diversity test. Li ZT; Hou JL; Li C Acc Chem Res; 2008 Oct; 41(10):1343-53. PubMed ID: 18361513 [TBL] [Abstract][Full Text] [Related]
19. Thermodynamic and structural basis for transition-state stabilization in antibody-catalyzed hydrolysis. Oda M; Ito N; Tsumuraya T; Suzuki K; Sakakura M; Fujii I J Mol Biol; 2007 May; 369(1):198-209. PubMed ID: 17428500 [TBL] [Abstract][Full Text] [Related]
20. The dinuclear Zn(II) complex catalyzed cyclization of a series of 2-hydroxypropyl aryl phosphate RNA models: progressive change in mechanism from rate-limiting P-O bond cleavage to substrate binding. Bunn SE; Liu CT; Lu ZL; Neverov AA; Brown RS J Am Chem Soc; 2007 Dec; 129(51):16238-48. PubMed ID: 18047345 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]