BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

315 related articles for article (PubMed ID: 16881656)

  • 1. A simple gamma-backbone modification preorganizes peptide nucleic acid into a helical structure.
    Dragulescu-Andrasi A; Rapireddy S; Frezza BM; Gayathri C; Gil RR; Ly DH
    J Am Chem Soc; 2006 Aug; 128(31):10258-67. PubMed ID: 16881656
    [TBL] [Abstract][Full Text] [Related]  

  • 2. DNA-like double helix formed by peptide nucleic acid.
    Wittung P; Nielsen PE; Buchardt O; Egholm M; Nordén B
    Nature; 1994 Apr; 368(6471):561-3. PubMed ID: 8139692
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The alpha-helical peptide nucleic acid concept: merger of peptide secondary structure and codified nucleic acid recognition.
    Huang Y; Dey S; Zhang X; Sönnichsen F; Garner P
    J Am Chem Soc; 2004 Apr; 126(14):4626-40. PubMed ID: 15070379
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The influence of helix morphology on co-operative polyamide backbone conformational flexibility in peptide nucleic acid complexes.
    Topham CM; Smith JC
    J Mol Biol; 1999 Oct; 292(5):1017-38. PubMed ID: 10512700
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Coordination-driven inversion of handedness in ligand-modified PNA.
    Bezer S; Rapireddy S; Skorik YA; Ly DH; Achim C
    Inorg Chem; 2011 Dec; 50(23):11929-37. PubMed ID: 22059624
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Strand invasion of mixed-sequence B-DNA by acridine-linked, gamma-peptide nucleic acid (gamma-PNA).
    Rapireddy S; He G; Roy S; Armitage BA; Ly DH
    J Am Chem Soc; 2007 Dec; 129(50):15596-600. PubMed ID: 18027941
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Side chain homologation of alanyl peptide nucleic acids: pairing selectivity and stacking.
    Diederichsen U; Weicherding D; Diezemann N
    Org Biomol Chem; 2005 Mar; 3(6):1058-66. PubMed ID: 15750649
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The structure of a gamma-modified peptide nucleic acid duplex.
    He W; Crawford MJ; Rapireddy S; Madrid M; Gil RR; Ly DH; Achim C
    Mol Biosyst; 2010 Sep; 6(9):1619-29. PubMed ID: 20386807
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Peptide nucleic acid-DNA duplexes containing the universal base 3-nitropyrrole.
    Zhang BP; Egholm M; Paul N; Pingle M; Bergstrom DE
    Methods; 2001 Feb; 23(2):132-40. PubMed ID: 11181032
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Design and synthesis of glycosylated beta3-peptides capable of folding into the 3(14)-helical conformation in water.
    Norgren AS; Arvidsson PI
    J Org Chem; 2008 Jul; 73(14):5272-8. PubMed ID: 18576687
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Solution structure of a peptide nucleic acid duplex from NMR data: features and limitations.
    He W; Hatcher E; Balaeff A; Beratan DN; Gil RR; Madrid M; Achim C
    J Am Chem Soc; 2008 Oct; 130(40):13264-73. PubMed ID: 18781753
    [TBL] [Abstract][Full Text] [Related]  

  • 12. β-PNA: peptide nucleic acid (PNA) with a chiral center at the β-position of the PNA backbone.
    Sugiyama T; Imamura Y; Demizu Y; Kurihara M; Takano M; Kittaka A
    Bioorg Med Chem Lett; 2011 Dec; 21(24):7317-20. PubMed ID: 22050888
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Conformational preferences of a short Aib/Ala-based water-soluble peptide as a function of temperature.
    Banerjee R; Chattopadhyay S; Basu G
    Proteins; 2009 Jul; 76(1):184-200. PubMed ID: 19137603
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Role of chirality and optical purity in nucleic acid recognition by PNA and PNA analogs.
    Sforza S; Galaverna G; Dossena A; Corradini R; Marchelli R
    Chirality; 2002 Jul; 14(7):591-8. PubMed ID: 12112334
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Combining G-quadruplex targeting motifs on a single peptide nucleic acid scaffold: a hybrid (3+1) PNA-DNA bimolecular quadruplex.
    Paul A; Sengupta P; Krishnan Y; Ladame S
    Chemistry; 2008; 14(28):8682-9. PubMed ID: 18668497
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Crystal structure of a partly self-complementary peptide nucleic acid (PNA) oligomer showing a duplex-triplex network.
    Petersson B; Nielsen BB; Rasmussen H; Larsen IK; Gajhede M; Nielsen PE; Kastrup JS
    J Am Chem Soc; 2005 Feb; 127(5):1424-30. PubMed ID: 15686374
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Highly efficient strand invasion by peptide nucleic acid bearing optically pure lysine residues in its backbone.
    Yamamoto Y; Yoshida J; Tedeschi T; Corradini R; Sforza S; Komiyama M
    Nucleic Acids Symp Ser (Oxf); 2006; (50):109-10. PubMed ID: 17150841
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effect of PNA backbone modifications on cyanine dye binding to PNA-DNA duplexes investigated by optical spectroscopy and molecular dynamics simulations.
    Dilek I; Madrid M; Singh R; Urrea CP; Armitage BA
    J Am Chem Soc; 2005 Mar; 127(10):3339-45. PubMed ID: 15755150
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Duplex formation and secondary structure of γ-PNA observed by NMR and CD.
    Viéville JM; Barluenga S; Winssinger N; Delsuc MA
    Biophys Chem; 2016 Mar; 210():9-13. PubMed ID: 26493008
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cooperative strand invasion of double-stranded DNA by peptide nucleic acid.
    Sugiyama T; Imamura Y; Hakamata W; Kurihara M; Kittaka A
    Nucleic Acids Symp Ser (Oxf); 2005; (49):167-8. PubMed ID: 17150686
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.