BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

128 related articles for article (PubMed ID: 16881665)

  • 1. Lithium diisopropylamide-mediated enolization: catalysis by hemilabile ligands.
    Ramirez A; Sun X; Collum DB
    J Am Chem Soc; 2006 Aug; 128(31):10326-36. PubMed ID: 16881665
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Lithium diisopropylamide-mediated ortholithiation and anionic fries rearrangement of aryl carbamates: role of aggregates and mixed aggregates.
    Singh KJ; Collum DB
    J Am Chem Soc; 2006 Oct; 128(42):13753-60. PubMed ID: 17044703
    [TBL] [Abstract][Full Text] [Related]  

  • 3. 1,4-addition of lithium diisopropylamide to unsaturated esters: role of rate-limiting deaggregation, autocatalysis, lithium chloride catalysis, and other mixed aggregation effects.
    Ma Y; Hoepker AC; Gupta L; Faggin MF; Collum DB
    J Am Chem Soc; 2010 Nov; 132(44):15610-23. PubMed ID: 20961095
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Lithium diisopropylamide-mediated ortholithiation of 2-fluoropyridines: rates, mechanisms, and the role of autocatalysis.
    Gupta L; Hoepker AC; Ma Y; Viciu MS; Faggin MF; Collum DB
    J Org Chem; 2013 May; 78(9):4214-30. PubMed ID: 23270408
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Autocatalysis in lithium diisopropylamide-mediated ortholithiations.
    Singh KJ; Hoepker AC; Collum DB
    J Am Chem Soc; 2008 Dec; 130(52):18008-17. PubMed ID: 19053473
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Lithium diisopropylamide: oligomer structures at low ligand concentrations.
    Rutherford JL; Collum DB
    J Am Chem Soc; 2001 Jan; 123(2):199-202. PubMed ID: 11456504
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Lithium diisopropylamide: solution kinetics and implications for organic synthesis.
    Collum DB; McNeil AJ; Ramirez A
    Angew Chem Int Ed Engl; 2007; 46(17):3002-17. PubMed ID: 17387670
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Regioselective lithium diisopropylamide-mediated ortholithiation of 1-chloro-3-(trifluoromethyl)benzene: role of autocatalysis, lithium chloride catalysis, and reversibility.
    Hoepker AC; Gupta L; Ma Y; Faggin MF; Collum DB
    J Am Chem Soc; 2011 May; 133(18):7135-51. PubMed ID: 21500823
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mechanism of Lithium Diisopropylamide-Mediated Ortholithiation of 1,4-Bis(trifluoromethyl)benzene under Nonequilibrium Conditions: Condition-Dependent Rate Limitation and Lithium Chloride-Catalyzed Inhibition.
    Liang J; Hoepker AC; Algera RF; Ma Y; Collum DB
    J Am Chem Soc; 2015 May; 137(19):6292-303. PubMed ID: 25900574
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Ketone enolization with lithium dialkylamides: the effects of structure, solvation, and mixed aggregates with excess butyllithium.
    Pratt LM; Newman A; Cyr JS; Johnson H; Miles B; Lattier A; Austin E; Henderson S; Hershey B; Lin M; Balamraju Y; Sammonds L; Cheramie J; Karnes J; Hymel E; Woodford B; Carter C
    J Org Chem; 2003 Aug; 68(16):6387-91. PubMed ID: 12895075
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Computational studies of lithium diisopropylamide deaggregation.
    Hoepker AC; Collum DB
    J Org Chem; 2011 Oct; 76(19):7985-93. PubMed ID: 21888365
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Lithium diisopropylamide-mediated ortholithiations: lithium chloride catalysis.
    Gupta L; Hoepker AC; Singh KJ; Collum DB
    J Org Chem; 2009 Mar; 74(5):2231-3. PubMed ID: 19191711
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Lithium diisopropylamide-mediated lithiation of 1,4-difluorobenzene under nonequilibrium conditions: role of monomer-, dimer-, and tetramer-based intermediates and lessons about rate limitation.
    Liang J; Hoepker AC; Bruneau AM; Ma Y; Gupta L; Collum DB
    J Org Chem; 2014 Dec; 79(24):11885-902. PubMed ID: 25000303
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Hemilabile ligands in organolithium chemistry: substituent effects on lithium ion chelation.
    Ramírez A; Lobkovsky E; Collum DB
    J Am Chem Soc; 2003 Dec; 125(50):15376-87. PubMed ID: 14664582
    [TBL] [Abstract][Full Text] [Related]  

  • 15. LDA-Mediated Synthesis of Triarylmethanes by Arylation of Diarylmethanes with Fluoroarenes at Room Temperature.
    Ji X; Huang T; Wu W; Liang F; Cao S
    Org Lett; 2015 Oct; 17(20):5096-9. PubMed ID: 26440480
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Lithium hexamethyldisilazide/triethylamine-mediated ketone enolization: remarkable rate accelerations stemming from a dimer-based mechanism.
    Zhao P; Collum DB
    J Am Chem Soc; 2003 Apr; 125(14):4008-9. PubMed ID: 12670196
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Ketone enolization by lithium hexamethyldisilazide: structural and rate studies of the accelerating effects of trialkylamines.
    Zhao P; Collum DB
    J Am Chem Soc; 2003 Nov; 125(47):14411-24. PubMed ID: 14624589
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Lithium diisopropylamide-mediated lithiations of imines: insights into highly structure-dependent rates and selectivities.
    Liao S; Collum DB
    J Am Chem Soc; 2003 Dec; 125(49):15114-27. PubMed ID: 14653747
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Lithium Diisopropylamide: Nonequilibrium Kinetics and Lessons Learned about Rate Limitation.
    Algera RF; Gupta L; Hoepker AC; Liang J; Ma Y; Singh KJ; Collum DB
    J Org Chem; 2017 May; 82(9):4513-4532. PubMed ID: 28368117
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Reversible enolization of beta-amino carboxamides by lithium hexamethyldisilazide.
    McNeil AJ; Collum DB
    J Am Chem Soc; 2005 Apr; 127(15):5655-61. PubMed ID: 15826205
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.