These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

193 related articles for article (PubMed ID: 16881704)

  • 61. Quantitation of 3-aminopropionamide in potatoes-a minor but potent precursor in acrylamide formation.
    Granvogl M; Jezussek M; Koehler P; Schieberle P
    J Agric Food Chem; 2004 Jul; 52(15):4751-7. PubMed ID: 15264910
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Tastier and healthier alternatives to French fries.
    Rommens CM; Shakya R; Heap M; Fessenden K
    J Food Sci; 2010 May; 75(4):H109-15. PubMed ID: 20546404
    [TBL] [Abstract][Full Text] [Related]  

  • 63. The role of oxylipins and antioxidants on off-flavor precursor formation during potato flake processing.
    Gosset V; Göbel C; Laine G; Delaplace P; du Jardin P; Feussner I; Fauconnier ML
    J Agric Food Chem; 2008 Dec; 56(23):11285-92. PubMed ID: 18989974
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Generation of Desired Aroma-Active as Well as Undesired Toxicologically Relevant Compounds during Deep-Frying of Potatoes with Different Edible Vegetable Fats and Oils.
    Thürer A; Granvogl M
    J Agric Food Chem; 2016 Nov; 64(47):9107-9115. PubMed ID: 27806575
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Acrylamide reduction in processed foods.
    Hanley AB; Offen C; Clarke M; Ing B; Roberts M; Burch R
    Adv Exp Med Biol; 2005; 561():387-92. PubMed ID: 16438313
    [TBL] [Abstract][Full Text] [Related]  

  • 66. The role of water on the formation of acrylamide in a potato model system.
    Mestdagh F; De Meulenaer B; Cucu T; Van Peteghem C
    Commun Agric Appl Biol Sci; 2006; 71(1):217-21. PubMed ID: 17191509
    [No Abstract]   [Full Text] [Related]  

  • 67. Determination of the alkylpyrazine composition of coffee using stable isotope dilution-gas chromatography-mass spectrometry (SIDA-GC-MS).
    Pickard S; Becker I; Merz KH; Richling E
    J Agric Food Chem; 2013 Jul; 61(26):6274-81. PubMed ID: 23745606
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Distribution of ascorbic acid in potato tubers and in home-processed and commercial potato foods.
    Han JS; Kozukue N; Young KS; Lee KR; Friedman M
    J Agric Food Chem; 2004 Oct; 52(21):6516-21. PubMed ID: 15479016
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Acrylamide content in heat-treated carbohydrate-rich foods in Poland.
    Mojska H; Gielecińska I; Szponar L
    Rocz Panstw Zakl Hig; 2007; 58(1):345-9. PubMed ID: 17711133
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Influence of Potato Crisps Processing Parameters on Acrylamide Formation and Bioaccesibility.
    Martinez E; Rodriguez JA; Mondragon AC; Lorenzo JM; Santos EM
    Molecules; 2019 Oct; 24(21):. PubMed ID: 31652876
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Effects of fruit extracts on the formation of acrylamide in model reactions and fried potato crisps.
    Cheng KW; Shi JJ; Ou SY; Wang M; Jiang Y
    J Agric Food Chem; 2010 Jan; 58(1):309-12. PubMed ID: 19925016
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Monitoring of cocoa volatiles produced during roasting by selected ion flow tube-mass spectrometry (SIFT-MS).
    Huang Y; Barringer SA
    J Food Sci; 2011 Mar; 76(2):C279-86. PubMed ID: 21535747
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Mitigation effects of phlorizin immersion on acrylamide formation in fried potato strips.
    Yang Y; Shen H; Liu T; Wen Y; Wang F; Guo Y
    J Sci Food Agric; 2021 Feb; 101(3):937-946. PubMed ID: 32748961
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Screening of acrylamide contents in potato crisps using process variable settings and near-infrared spectroscopy.
    Segtnan VH; Kita A; Mielnik M; Jørgensen K; Knutsen SH
    Mol Nutr Food Res; 2006 Sep; 50(9):811-7. PubMed ID: 16944446
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Modification of the health-promoting value of potato tubers field grown under drought stress: emphasis on dietary antioxidant and glycoalkaloid contents in five native andean cultivars (Solanum tuberosum L.).
    Andre CM; Schafleitner R; Guignard C; Oufir M; Aliaga CA; Nomberto G; Hoffmann L; Hausman JF; Evers D; Larondelle Y
    J Agric Food Chem; 2009 Jan; 57(2):599-609. PubMed ID: 19105644
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Analysis of phenolic compounds by high-performance liquid chromatography and liquid chromatography/mass spectrometry in potato plant flowers, leaves, stems, and tubers and in home-processed potatoes.
    Im HW; Suh BS; Lee SU; Kozukue N; Ohnisi-Kameyama M; Levin CE; Friedman M
    J Agric Food Chem; 2008 May; 56(9):3341-9. PubMed ID: 18386928
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Changes in the concentrations of acrylamide, selected odorants, and catechins caused by roasting of green tea.
    Mizukami Y; Sawai Y; Yamaguchi Y
    J Agric Food Chem; 2008 Mar; 56(6):2154-9. PubMed ID: 18298065
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Mitigation strategies to reduce acrylamide formation in fried potato products.
    Morales F; Capuano E; Fogliano V
    Ann N Y Acad Sci; 2008 Apr; 1126():89-100. PubMed ID: 18448800
    [TBL] [Abstract][Full Text] [Related]  

  • 79. [Biosensors for assay of glycoalkaloids in potato tubers].
    Arkhipova VN; Dziadevich SV; Jaffrezic-Renault N; Martelet C; Soldatkin AP
    Prikl Biokhim Mikrobiol; 2008; 44(3):347-52. PubMed ID: 18663962
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Determination of acrylamide in food by solid-phase microextraction coupled to gas chromatography-positive chemical ionization tandem mass spectrometry.
    Lee MR; Chang LY; Dou J
    Anal Chim Acta; 2007 Jan; 582(1):19-23. PubMed ID: 17386469
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.