These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

295 related articles for article (PubMed ID: 16881710)

  • 1. Effects, quenching mechanisms, and kinetics of water soluble compounds in riboflavin photosensitized oxidation of milk.
    Bradley DG; Kim HJ; Min DB
    J Agric Food Chem; 2006 Aug; 54(16):6016-20. PubMed ID: 16881710
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Quenching mechanisms and kinetics of Trolox and ascorbic acid on the riboflavin-photosensitized oxidation of tryptophan and tyrosine.
    Yettella RR; Min DB
    J Agric Food Chem; 2008 Nov; 56(22):10887-92. PubMed ID: 18975971
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Photosensitizing effect of riboflavin, lumiflavin, and lumichrome on the generation of volatiles in soy milk.
    Huang R; Kim HJ; Min DB
    J Agric Food Chem; 2006 Mar; 54(6):2359-64. PubMed ID: 16536619
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Changes of headspace volatiles in milk with riboflavin photosensitization.
    Lee JH; Min DB
    J Food Sci; 2009 Sep; 74(7):C563-8. PubMed ID: 19895461
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Direct spectroscopic observation of singlet oxygen quenching and kinetic studies of physical and chemical singlet oxygen quenching rate constants of synthetic antioxidants (BHA, BHT, and TBHQ) in methanol.
    Lee JH; Jung MY
    J Food Sci; 2010 Aug; 75(6):C506-13. PubMed ID: 20722904
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Kinetic study of the quenching reaction of singlet oxygen by common synthetic antioxidants (tert-butylhydroxyanisol, tert-di-butylhydroxytoluene, and tert-butylhydroquinone) as compared with alpha-tocopherol.
    Kim JI; Lee JH; Choi DS; Won BM; Jung MY; Park J
    J Food Sci; 2009 Jun; 74(5):C362-9. PubMed ID: 19646028
    [TBL] [Abstract][Full Text] [Related]  

  • 7. ESR study of the singlet oxygen quenching and protective activity of Trolox on the photodecomposition of riboflavin and lumiflavin in aqueous buffer solutions.
    Jung MY; Min DB
    J Food Sci; 2009 Aug; 74(6):C449-55. PubMed ID: 19723181
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Quenching mechanism and kinetics of ascorbic acid on the photosensitizing effects of synthetic food colorant FD&C Red Nr 3.
    Yang TS; Min DB
    J Food Sci; 2009; 74(9):C718-22. PubMed ID: 20492106
    [TBL] [Abstract][Full Text] [Related]  

  • 9. On the effect of 1,4-diazabicyclo[2.2.2]octane on the singlet-oxygen dimol emission: photosensitized generation of (1O2)2.
    Kazakov DV; Schmidt R
    J Phys Chem A; 2007 May; 111(20):4274-9. PubMed ID: 17455925
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Photoprotection of vitamins in skimmed milk by an aqueous soluble lycopene-gum Arabic microcapsule.
    Montenegro MA; Nunes IL; Mercadante AZ; Borsarelli CD
    J Agric Food Chem; 2007 Jan; 55(2):323-9. PubMed ID: 17227061
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Prooxidative and antioxidative properties of β-carotene in chlorophyll and riboflavin photosensitized oil-in-water emulsions.
    Park J; Kim TS; Kim MJ; Lee J
    Food Chem; 2013 Sep; 140(1-2):255-61. PubMed ID: 23578641
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Riboflavin as a photosensitizer. Effects on human health and food quality.
    Cardoso DR; Libardi SH; Skibsted LH
    Food Funct; 2012 May; 3(5):487-502. PubMed ID: 22406738
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Modelling the environmental degradation of water contaminants. Kinetics and mechanism of the riboflavin-sensitised-photooxidation of phenolic compounds.
    Haggi E; Bertolotti S; García NA
    Chemosphere; 2004 Jun; 55(11):1501-7. PubMed ID: 15099730
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Vitamin B-sensitized photo-oxidation of dopamine.
    Massad WA; Barbieri Y; Romero M; García NA
    Photochem Photobiol; 2008; 84(5):1201-8. PubMed ID: 18346086
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Phenol and terpene quenching of singlet- and triplet-excited states of riboflavin in relation to light-struck flavor formation in beer.
    Cardoso DR; Olsen K; Møller JK; Skibsted LH
    J Agric Food Chem; 2006 Jul; 54(15):5630-6. PubMed ID: 16848556
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Controlling light oxidation flavor in milk by blocking riboflavin excitation wavelengths by interference.
    Webster JB; Duncan SE; Marcy JE; O'Keefe SF
    J Food Sci; 2009; 74(9):S390-8. PubMed ID: 20492128
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effects of water-soluble natural antioxidants on photosensitized oxidation of conjugated linoleic acid in an oil-in-water emulsion system.
    Liu TT; Yang TS
    J Food Sci; 2008 May; 73(4):C256-61. PubMed ID: 18460119
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Rose bengal-sensitized photooxidation of 2-chlorophenol in water using solar simulated light.
    Miller JS
    Water Res; 2005; 39(2-3):412-22. PubMed ID: 15644250
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Protective influence of several packaging materials on light oxidation of milk.
    Mestdagh F; De Meulenaer B; De Clippeleer J; Devlieghere F; Huyghebaert A
    J Dairy Sci; 2005 Feb; 88(2):499-510. PubMed ID: 15653515
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effects of metal chelator, sodium azide, and superoxide dismutase on the oxidative stability in riboflavin-photosensitized oil-in-water emulsion systems.
    Lee J; Decker EA
    J Agric Food Chem; 2011 Jun; 59(11):6271-6. PubMed ID: 21542578
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.