BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

190 related articles for article (PubMed ID: 16881716)

  • 21. Identification of nutritional descriptors of roasting intensity in beverages of Arabica and Robusta coffee beans.
    Bicho NC; Leitão AE; Ramalho JC; De Alvarenga NB; Lidon FC
    Int J Food Sci Nutr; 2011 Dec; 62(8):865-71. PubMed ID: 22032554
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Antioxidant activity and characterization of volatile constituents of Taheebo (Tabebuia impetiginosa Martius ex DC).
    Park BS; Lee KG; Shibamoto T; Lee SE; Takeoka GR
    J Agric Food Chem; 2003 Jan; 51(1):295-300. PubMed ID: 12502424
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Coffee drinking induces incorporation of phenolic acids into LDL and increases the resistance of LDL to ex vivo oxidation in humans.
    Natella F; Nardini M; Belelli F; Scaccini C
    Am J Clin Nutr; 2007 Sep; 86(3):604-9. PubMed ID: 17823423
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Antioxidant activity of flavonoids isolated from young green barley leaves toward biological lipid samples.
    Benedet JA; Umeda H; Shibamoto T
    J Agric Food Chem; 2007 Jul; 55(14):5499-504. PubMed ID: 17539660
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Roasted coffees high in lipophilic antioxidants and chlorogenic acid lactones are more neuroprotective than green coffees.
    Chu YF; Brown PH; Lyle BJ; Chen Y; Black RM; Williams CE; Lin YC; Hsu CW; Cheng IH
    J Agric Food Chem; 2009 Oct; 57(20):9801-8. PubMed ID: 19772322
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Natural occurrence of ochratoxin A and antioxidant activities of green and roasted coffees and corresponding byproducts.
    Napolitano A; Fogliano V; Tafuri A; Ritieni A
    J Agric Food Chem; 2007 Dec; 55(25):10499-504. PubMed ID: 18020409
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Metabolite profiling of hydroxycinnamate derivatives in plasma and urine after the ingestion of coffee by humans: identification of biomarkers of coffee consumption.
    Stalmach A; Mullen W; Barron D; Uchida K; Yokota T; Cavin C; Steiling H; Williamson G; Crozier A
    Drug Metab Dispos; 2009 Aug; 37(8):1749-58. PubMed ID: 19460943
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Low-temperature bath/high-conductivity zone/stacking micellar electrokinetic chromatography for the analysis of phenolic acids in coffee drink.
    Zhu J; Qi S; Li J; Chen X
    J Chromatogr A; 2008 Nov; 1212(1-2):137-44. PubMed ID: 18952221
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Coffee simulated inhibition of pancreatic lipase and antioxidant activities: Effect of milk and decaffeination.
    Jurema Soares M; de Souza Figueira M; Rodrigues Sampaio G; Aparecida Manólio Soares-Freitas R; Clara da Costa Pinaffi-Langley A; Aparecida Ferraz da Silva Torres E
    Food Res Int; 2022 Oct; 160():111730. PubMed ID: 36076418
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Impact of dose on the bioavailability of coffee chlorogenic acids in humans.
    Stalmach A; Williamson G; Crozier A
    Food Funct; 2014 Aug; 5(8):1727-37. PubMed ID: 24947504
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Caffeic acid as antioxidant in fish muscle: mechanism of synergism with endogenous ascorbic acid and alpha-tocopherol.
    Iglesias J; Pazos M; Andersen ML; Skibsted LH; Medina I
    J Agric Food Chem; 2009 Jan; 57(2):675-81. PubMed ID: 19117418
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Inhibitory effects of volatile antioxidants found in various beans on malonaldehyde formation in horse blood plasma.
    Lee SJ; Lee KG
    Food Chem Toxicol; 2005 Apr; 43(4):515-20. PubMed ID: 15721197
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Antioxidant and genoprotective effects of spent coffee extracts in human cells.
    Bravo J; Arbillaga L; de Peña MP; Cid C
    Food Chem Toxicol; 2013 Oct; 60():397-403. PubMed ID: 23948352
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Chlorogenic acids and lactones in regular and water-decaffeinated arabica coffees.
    Farah A; de Paulis T; Moreira DP; Trugo LC; Martin PR
    J Agric Food Chem; 2006 Jan; 54(2):374-81. PubMed ID: 16417293
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Caffeine adsorption of montmorillonite in coffee extracts.
    Shiono T; Yamamoto K; Yotsumoto Y; Yoshida A
    Biosci Biotechnol Biochem; 2017 Aug; 81(8):1591-1597. PubMed ID: 28622119
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Correlation of selected constituents with the total antioxidant capacity of coffee beverages: influence of the brewing procedure.
    López-Galilea I; De Peña MP; Cid C
    J Agric Food Chem; 2007 Jul; 55(15):6110-7. PubMed ID: 17608497
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Selective enzymatic hydrolysis of chlorogenic acid lactones in a model system and in a coffee extract. Application to reduction of coffee bitterness.
    Kraehenbuehl K; Page-Zoerkler N; Mauroux O; Gartenmann K; Blank I; Bel-Rhlid R
    Food Chem; 2017 Mar; 218():9-14. PubMed ID: 27719962
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Antioxidant capacity, phenolic acids and caffeine contents of some commercial coffees available on the Romanian market.
    Trandafir I; Nour V; Ionica ME
    Arch Latinoam Nutr; 2013 Mar; 63(1):87-94. PubMed ID: 24167962
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Antioxidant phytochemicals in hazelnut kernel (Corylus avellana L.) and hazelnut byproducts.
    Shahidi F; Alasalvar C; Liyana-Pathirana CM
    J Agric Food Chem; 2007 Feb; 55(4):1212-20. PubMed ID: 17249682
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Incorporation of chlorogenic acids in coffee brew melanoidins.
    Bekedam EK; Schols HA; Van Boekel MA; Smit G
    J Agric Food Chem; 2008 Mar; 56(6):2055-63. PubMed ID: 18290625
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.