BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

346 related articles for article (PubMed ID: 16882313)

  • 21. High-throughput characterization and quality control of small-molecule combinatorial libraries.
    Kenseth JR; Coldiron SJ
    Curr Opin Chem Biol; 2004 Aug; 8(4):418-23. PubMed ID: 15288253
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Optimization of high throughput virtual screening by combining shape-matching and docking methods.
    Lee HS; Choi J; Kufareva I; Abagyan R; Filikov A; Yang Y; Yoon S
    J Chem Inf Model; 2008 Mar; 48(3):489-97. PubMed ID: 18302357
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Practical approaches to efficient screening: information-rich screening protocol.
    Karnachi PS; Brown FK
    J Biomol Screen; 2004 Dec; 9(8):678-86. PubMed ID: 15634794
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Discovering novel ligands for macromolecules using X-ray crystallographic screening.
    Nienaber VL; Richardson PL; Klighofer V; Bouska JJ; Giranda VL; Greer J
    Nat Biotechnol; 2000 Oct; 18(10):1105-8. PubMed ID: 11017052
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Kinase inhibitor data modeling and de novo inhibitor design with fragment approaches.
    Vieth M; Erickson J; Wang J; Webster Y; Mader M; Higgs R; Watson I
    J Med Chem; 2009 Oct; 52(20):6456-66. PubMed ID: 19791746
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Strategy for discovering chemical inhibitors of human cyclophilin a: focused library design, virtual screening, chemical synthesis and bioassay.
    Li J; Zhang J; Chen J; Luo X; Zhu W; Shen J; Liu H; Shen X; Jiang H
    J Comb Chem; 2006; 8(3):326-37. PubMed ID: 16677001
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Slow-binding human serine racemase inhibitors from high-throughput screening of combinatorial libraries.
    Dixon SM; Li P; Liu R; Wolosker H; Lam KS; Kurth MJ; Toney MD
    J Med Chem; 2006 Apr; 49(8):2388-97. PubMed ID: 16610782
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Receptor-based virtual ligand screening for the identification of novel CDC25 phosphatase inhibitors.
    Montes M; Braud E; Miteva MA; Goddard ML; Mondésert O; Kolb S; Brun MP; Ducommun B; Garbay C; Villoutreix BO
    J Chem Inf Model; 2008 Jan; 48(1):157-65. PubMed ID: 18154280
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Novel 2D fingerprints for ligand-based virtual screening.
    Ewing T; Baber JC; Feher M
    J Chem Inf Model; 2006; 46(6):2423-31. PubMed ID: 17125184
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Application of QSAR and shape pharmacophore modeling approaches for targeted chemical library design.
    Ebalunode JO; Zheng W; Tropsha A
    Methods Mol Biol; 2011; 685():111-33. PubMed ID: 20981521
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Structure-based development of target-specific compound libraries.
    Orry AJ; Abagyan RA; Cavasotto CN
    Drug Discov Today; 2006 Mar; 11(5-6):261-6. PubMed ID: 16580603
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Analysis of structure-based virtual screening studies and characterization of identified active compounds.
    Ripphausen P; Stumpfe D; Bajorath J
    Future Med Chem; 2012 Apr; 4(5):603-13. PubMed ID: 22458680
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Design and combinatorial synthesis of a novel kinase-focused library using click chemistry-based fragment assembly.
    Irie T; Fujii I; Sawa M
    Bioorg Med Chem Lett; 2012 Jan; 22(1):591-6. PubMed ID: 22104147
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Discovery of novel cathepsin S inhibitors by pharmacophore-based virtual high-throughput screening.
    Markt P; McGoohan C; Walker B; Kirchmair J; Feldmann C; De Martino G; Spitzer G; Distinto S; Schuster D; Wolber G; Laggner C; Langer T
    J Chem Inf Model; 2008 Aug; 48(8):1693-705. PubMed ID: 18637674
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Learning from the data: mining of large high-throughput screening databases.
    Yan SF; King FJ; He Y; Caldwell JS; Zhou Y
    J Chem Inf Model; 2006; 46(6):2381-95. PubMed ID: 17125181
    [TBL] [Abstract][Full Text] [Related]  

  • 36. High-throughput determination of mode of inhibition in lead identification and optimization.
    Wei M; Wynn R; Hollis G; Liao B; Margulis A; Reid BG; Klabe R; Liu PC; Becker-Pasha M; Rupar M; Burn TC; McCall DE; Li Y
    J Biomol Screen; 2007 Mar; 12(2):220-8. PubMed ID: 17351185
    [TBL] [Abstract][Full Text] [Related]  

  • 37. A similarity-based data-fusion approach to the visual characterization and comparison of compound databases.
    Medina-Franco JL; Maggiora GM; Giulianotti MA; Pinilla C; Houghten RA
    Chem Biol Drug Des; 2007 Nov; 70(5):393-412. PubMed ID: 17927720
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Protein structure similarity clustering and natural product structure as guiding principles in drug discovery.
    Koch MA; Waldmann H
    Drug Discov Today; 2005 Apr; 10(7):471-83. PubMed ID: 15809193
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Novel lead structures for p38 MAP kinase via FieldScreen virtual screening.
    Cheeseright TJ; Holm M; Lehmann F; Luik S; Göttert M; Melville JL; Laufer S
    J Med Chem; 2009 Jul; 52(14):4200-9. PubMed ID: 19489590
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Protein structure similarity clustering (PSSC) and natural product structure as inspiration sources for drug development and chemical genomics.
    Dekker FJ; Koch MA; Waldmann H
    Curr Opin Chem Biol; 2005 Jun; 9(3):232-9. PubMed ID: 15939324
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 18.