These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
132 related articles for article (PubMed ID: 16883477)
41. The influence of different nutrient levels on insect-induced plant volatiles in Bt and conventional oilseed rape plants. Ibrahim MA; Stewart-Jones A; Pulkkinen J; Poppy GM; Holopainen JK Plant Biol (Stuttg); 2008 Jan; 10(1):97-107. PubMed ID: 18211550 [TBL] [Abstract][Full Text] [Related]
42. Chromosomal location and expression of green fluorescent protein (gfp) gene in microspore derived transgenic barley (Hordeum vulgare L.). Chen JM; Carlson AR; Wan JM; Kasha KJ Yi Chuan Xue Bao; 2003 Aug; 30(8):697-705. PubMed ID: 14682236 [TBL] [Abstract][Full Text] [Related]
43. Detection and quantitation of genetically modified maize (Bt-176 transgenic maize) by applying ligation detection reaction and universal array technology. Bordoni R; Mezzelani A; Consolandi C; Frosini A; Rizzi E; Castiglioni B; Salati C; Marmiroli N; Marchelli R; Rossi Bernardi L; Battaglia C; De Bellis G J Agric Food Chem; 2004 Mar; 52(5):1049-54. PubMed ID: 14995096 [TBL] [Abstract][Full Text] [Related]
44. Disruption of Ha_BtR alters binding of Bacillus thuringiensis delta-endotoxin Cry1Ac to midgut BBMVs of Helicoverpa armigera. Xu X; Wu Y J Invertebr Pathol; 2008 Jan; 97(1):27-32. PubMed ID: 17681529 [TBL] [Abstract][Full Text] [Related]
45. Effect of Bt cotton expressing Cry1Ac and Cry2Ab, non-Bt cotton and starvation on survival and development of Trichoplusia ni (Lepidoptera: Noctuidae). Li YX; Greenberg SM; Liu TX Pest Manag Sci; 2007 May; 63(5):476-82. PubMed ID: 17421053 [TBL] [Abstract][Full Text] [Related]
46. A metabonomic study of transgenic maize (Zea mays) seeds revealed variations in osmolytes and branched amino acids. Manetti C; Bianchetti C; Casciani L; Castro C; Di Cocco ME; Miccheli A; Motto M; Conti F J Exp Bot; 2006; 57(11):2613-25. PubMed ID: 16831843 [TBL] [Abstract][Full Text] [Related]
47. Inheritance of GFP-Bt transgenes from Brassica napus in backcrosses with three wild B. rapa accessions. Zhu B; Lawrence JR; Warwick SI; Mason P; Braun L; Halfhill MD; Stewart CN Environ Biosafety Res; 2004; 3(1):45-54. PubMed ID: 15612354 [TBL] [Abstract][Full Text] [Related]
48. Comparative study on effect of different promoters on expression of cry1Ac in Bacillus thuringiensis chromosome. Chaoyin Y; Wei S; Sun M; Lin L; Faju C; Zhengquan H; Ziniu Y J Appl Microbiol; 2007 Aug; 103(2):454-61. PubMed ID: 17650206 [TBL] [Abstract][Full Text] [Related]
49. Mitigation of establishment of Brassica napus transgenes in volunteers using a tandem construct containing a selectively unfit gene. Al-Ahmad H; Dwyer J; Moloney M; Gressel J Plant Biotechnol J; 2006 Jan; 4(1):7-21. PubMed ID: 17177781 [TBL] [Abstract][Full Text] [Related]
50. Binding of Bacillus thuringiensis toxin Cry1Ac to multiple sites of cadherin in pink bollworm. Fabrick JA; Tabashnik BE Insect Biochem Mol Biol; 2007 Feb; 37(2):97-106. PubMed ID: 17244539 [TBL] [Abstract][Full Text] [Related]
51. Helicoverpa armigera baseline susceptibility to Bacillus thuringiensis Cry toxins and resistance management for Bt cotton in India. Gujar GT; Kalia V; Kumari A; Singh BP; Mittal A; Nair R; Mohan M J Invertebr Pathol; 2007 Jul; 95(3):214-9. PubMed ID: 17475275 [TBL] [Abstract][Full Text] [Related]
52. Construction of Bacillus thuringiensis wild-type S76 and Cry- derivatives expressing a green fluorescent protein: two potential marker organisms to study bacteria-plant interactions. Parente AF; Silva-Pereira I; Baldani JI; Tibúrcio VH; Báo SN; De-Souza MT Can J Microbiol; 2008 Sep; 54(9):786-90. PubMed ID: 18772942 [TBL] [Abstract][Full Text] [Related]
53. Hybridization between transgenic Brassica napus L. and its wild relatives: Brassica rapa L., Raphanus raphanistrum L., Sinapis arvensis L., and Erucastrum gallicum (Willd.) O.E. Schulz. Warwick SI; Simard MJ; Légère A; Beckie HJ; Braun L; Zhu B; Mason P; Séguin-Swartz G; Stewart CN Theor Appl Genet; 2003 Aug; 107(3):528-39. PubMed ID: 12721639 [TBL] [Abstract][Full Text] [Related]
54. Population-scale laboratory studies of the effect of transgenic plants on nontarget insects. Schuler TH; Denholm I; Jouanin L; Clark SJ; Clark AJ; Poppy GM Mol Ecol; 2001 Jul; 10(7):1845-53. PubMed ID: 11472551 [TBL] [Abstract][Full Text] [Related]
55. Regeneration of sugarcane elite breeding lines and engineering of stem borer resistance. Weng LX; Deng H; Xu JL; Li Q; Wang LH; Jiang Z; Zhang HB; Li Q; Zhang LH Pest Manag Sci; 2006 Feb; 62(2):178-87. PubMed ID: 16408322 [TBL] [Abstract][Full Text] [Related]
57. Monitoring and adaptive resistance management in Australia for Bt-cotton: current status and future challenges. Downes S; Mahon R; Olsen K J Invertebr Pathol; 2007 Jul; 95(3):208-13. PubMed ID: 17470372 [TBL] [Abstract][Full Text] [Related]
58. Signal peptide of potato PinII enhances the expression of Cry1Ac in transgenic tobacco. Liu YJ; Yuan Y; Zheng J; Tao YZ; Dong ZG; Wang JH; Wang GY Acta Biochim Biophys Sin (Shanghai); 2004 Aug; 36(8):553-8. PubMed ID: 15295648 [TBL] [Abstract][Full Text] [Related]
59. Bacillus thuringiensis as a specific, safe, and effective tool for insect pest control. Roh JY; Choi JY; Li MS; Jin BR; Je YH J Microbiol Biotechnol; 2007 Apr; 17(4):547-59. PubMed ID: 18051264 [TBL] [Abstract][Full Text] [Related]
60. Expression of modified Cry1Ac gene of Bacillus thuringiensis in transgenic tobacco plants. Misztal LH; Mostowska A; Skibinska M; Bajsa J; Musial WG; Jarmolowski A Mol Biotechnol; 2004 Jan; 26(1):17-26. PubMed ID: 14734820 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]