BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

333 related articles for article (PubMed ID: 16884257)

  • 1. Adsorption and activation of CO over flat and stepped Co surfaces: a first principles analysis.
    Ge Q; Neurock M
    J Phys Chem B; 2006 Aug; 110(31):15368-80. PubMed ID: 16884257
    [TBL] [Abstract][Full Text] [Related]  

  • 2. First-principles study of C adsorption, O adsorption, and CO dissociation on flat and stepped Ni surfaces.
    Li T; Bhatia B; Sholl DS
    J Chem Phys; 2004 Nov; 121(20):10241-9. PubMed ID: 15549900
    [TBL] [Abstract][Full Text] [Related]  

  • 3. General rules for predicting where a catalytic reaction should occur on metal surfaces: a density functional theory study of C-H and C-O bond breaking/making on flat, stepped, and kinked metal surfaces.
    Liu ZP; Hu P
    J Am Chem Soc; 2003 Feb; 125(7):1958-67. PubMed ID: 12580623
    [TBL] [Abstract][Full Text] [Related]  

  • 4. CO adsorption and reaction on clean and oxygen-covered Au(211) surfaces.
    Kim J; Samano E; Koel BE
    J Phys Chem B; 2006 Sep; 110(35):17512-7. PubMed ID: 16942092
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Enhanced low-temperature CO oxidation on a stepped platinum surface for oxygen pressures above 10(-5) Torr.
    Lewis HD; Burnett DJ; Gabelnick AM; Fischer DA; Gland JL
    J Phys Chem B; 2005 Nov; 109(46):21847-57. PubMed ID: 16853838
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effect of steps on the decomposition of CH3O at PdZn alloy surfaces.
    Chen ZX; Lim KH; Neyman KM; Rösch N
    J Phys Chem B; 2005 Mar; 109(10):4568-74. PubMed ID: 16851534
    [TBL] [Abstract][Full Text] [Related]  

  • 7. DFT investigation of CO adsorption on Pt(211) and Pt(311) surfaces from low to high coverage.
    Orita H; Inada Y
    J Phys Chem B; 2005 Dec; 109(47):22469-75. PubMed ID: 16853927
    [TBL] [Abstract][Full Text] [Related]  

  • 8. CO
    Kwawu CR; Tia R; Adei E; Dzade NY; Catlow CRA; de Leeuw NH
    Phys Chem Chem Phys; 2017 Jul; 19(29):19478-19486. PubMed ID: 28718470
    [TBL] [Abstract][Full Text] [Related]  

  • 9. First-principles study of CO adsorption and vibration on Au surfaces.
    Loffreda D; Sautet P
    J Phys Chem B; 2005 May; 109(19):9596-603. PubMed ID: 16852155
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Studies of CO adsorption on Pt(100), Pt(410), and Pt(110) surfaces using density functional theory.
    Yamagishi S; Fujimoto T; Inada Y; Orita H
    J Phys Chem B; 2005 May; 109(18):8899-908. PubMed ID: 16852058
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A DFT study of the adsorption and dissociation of CO on Fe(100): influence of surface coverage on the nature of accessible adsorption states.
    Bromfield TC; Ferré DC; Niemantsverdriet JW
    Chemphyschem; 2005 Feb; 6(2):254-60. PubMed ID: 15751347
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Coverage effects on the palladium-catalyzed synthesis of vinyl acetate: comparison between theory and experiment.
    Calaza F; Stacchiola D; Neurock M; Tysoe WT
    J Am Chem Soc; 2010 Feb; 132(7):2202-7. PubMed ID: 20121234
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A computational study of H2 dissociation on silver surfaces: the effect of oxygen in the added row structure of Ag110.
    Mohammad AB; Hwa Lim K; Yudanov IV; Neyman KM; Rösch N
    Phys Chem Chem Phys; 2007 Mar; 9(10):1247-54. PubMed ID: 17325771
    [TBL] [Abstract][Full Text] [Related]  

  • 14. O2 evolution on a clean partially reduced rutile TiO2(110) surface and on the same surface precovered with Au1 and Au2: the importance of spin conservation.
    Chrétien S; Metiu H
    J Chem Phys; 2008 Aug; 129(7):074705. PubMed ID: 19044790
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Ab initio reaction path analysis of benzene hydrogenation to cyclohexane on Pt(111).
    Saeys M; Reyniers MF; Neurock M; Marin GB
    J Phys Chem B; 2005 Feb; 109(6):2064-73. PubMed ID: 16851197
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Linear relationship between activation energies and reaction energies for coverage-dependent dissociation reactions on rhodium surfaces.
    Inderwildi OR; Lebiedz D; Warnatz J
    Phys Chem Chem Phys; 2005 Jul; 7(13):2552-3. PubMed ID: 16189563
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Structure dependence of NO adsorption and dissociation on platinum surfaces.
    Ge Q; Neurock M
    J Am Chem Soc; 2004 Feb; 126(5):1551-9. PubMed ID: 14759214
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Dissociative adsorption of CO2 on flat, stepped, and kinked Cu surfaces.
    Muttaqien F; Hamamoto Y; Inagaki K; Morikawa Y
    J Chem Phys; 2014 Jul; 141(3):034702. PubMed ID: 25053329
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Influence of stoichiometry and charge state on the structure and reactivity of cobalt oxide clusters with CO.
    Johnson GE; Reveles JU; Reilly NM; Tyo EC; Khanna SN; Castleman AW
    J Phys Chem A; 2008 Nov; 112(45):11330-40. PubMed ID: 18855367
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Comparative study of water dissociation on Rh(111) and Ni(111) studied with first principles calculations.
    Pozzo M; Carlini G; Rosei R; Alfè D
    J Chem Phys; 2007 Apr; 126(16):164706. PubMed ID: 17477623
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.