BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

219 related articles for article (PubMed ID: 16885314)

  • 1. Dominant microbial populations in limestone-corroding stream biofilms, Frasassi cave system, Italy.
    Macalady JL; Lyon EH; Koffman B; Albertson LK; Meyer K; Galdenzi S; Mariani S
    Appl Environ Microbiol; 2006 Aug; 72(8):5596-609. PubMed ID: 16885314
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Niche differentiation among sulfur-oxidizing bacterial populations in cave waters.
    Macalady JL; Dattagupta S; Schaperdoth I; Jones DS; Druschel GK; Eastman D
    ISME J; 2008 Jun; 2(6):590-601. PubMed ID: 18356823
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Extremely acidic, pendulous cave wall biofilms from the Frasassi cave system, Italy.
    Macalady JL; Jones DS; Lyon EH
    Environ Microbiol; 2007 Jun; 9(6):1402-14. PubMed ID: 17504478
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A novel symbiosis between chemoautotrophic bacteria and a freshwater cave amphipod.
    Dattagupta S; Schaperdoth I; Montanari A; Mariani S; Kita N; Valley JW; Macalady JL
    ISME J; 2009 Aug; 3(8):935-43. PubMed ID: 19360027
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Bacterial diversity and ecosystem function of filamentous microbial mats from aphotic (cave) sulfidic springs dominated by chemolithoautotrophic "Epsilonproteobacteria".
    Engel AS; Porter ML; Stern LA; Quinlan S; Bennett PC
    FEMS Microbiol Ecol; 2004 Dec; 51(1):31-53. PubMed ID: 16329854
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Microbial community structures and in situ sulfate-reducing and sulfur-oxidizing activities in biofilms developed on mortar specimens in a corroded sewer system.
    Satoh H; Odagiri M; Ito T; Okabe S
    Water Res; 2009 Oct; 43(18):4729-39. PubMed ID: 19709714
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Community structure of subsurface biofilms in the thermal sulfidic caves ofAcquasanta Terme, Italy.
    Jones DS; Tobler DJ; Schaperdoth I; Mainiero M; Macalady JL
    Appl Environ Microbiol; 2010 Sep; 76(17):5902-10. PubMed ID: 20639361
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Filamentous "Epsilonproteobacteria" dominate microbial mats from sulfidic cave springs.
    Engel AS; Lee N; Porter ML; Stern LA; Bennett PC; Wagner M
    Appl Environ Microbiol; 2003 Sep; 69(9):5503-11. PubMed ID: 12957939
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Sulfate-reducing bacteria-dominated biofilms that precipitate ZnS in a subsurface circumneutral-pH mine drainage system.
    Labrenz M; Banfield JF
    Microb Ecol; 2004 Apr; 47(3):205-17. PubMed ID: 14994175
    [TBL] [Abstract][Full Text] [Related]  

  • 10. In situ detection of novel Acidobacteria in microbial mats from a chemolithoautotrophically based cave ecosystem (Lower Kane Cave, WY, USA).
    Meisinger DB; Zimmermann J; Ludwig W; Schleifer KH; Wanner G; Schmid M; Bennett PC; Engel AS; Lee NM
    Environ Microbiol; 2007 Jun; 9(6):1523-34. PubMed ID: 17504489
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Spatial dominance and inorganic carbon assimilation by conspicuous autotrophic biofilms in a physical and chemical gradient of a cold sulfurous spring: the role of differential ecological strategies.
    Camacho A; Rochera C; Silvestre JJ; Vicente E; Hahn MW
    Microb Ecol; 2005 Aug; 50(2):172-84. PubMed ID: 16211325
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Bacterial diversity and sulfur cycling in a mesophilic sulfide-rich spring.
    Elshahed MS; Senko JM; Najar FZ; Kenton SM; Roe BA; Dewers TA; Spear JR; Krumholz LR
    Appl Environ Microbiol; 2003 Sep; 69(9):5609-21. PubMed ID: 12957951
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Metagenomic insights into S(0) precipitation in a terrestrial subsurface lithoautotrophic ecosystem.
    Hamilton TL; Jones DS; Schaperdoth I; Macalady JL
    Front Microbiol; 2014; 5():756. PubMed ID: 25620962
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Phylogenetic diversity of transition and anoxic zone bacterial communities within a near-shore anoxic basin: Nitinat Lake.
    Schmidtova J; Hallam SJ; Baldwin SA
    Environ Microbiol; 2009 Dec; 11(12):3233-51. PubMed ID: 19735278
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Gamma- and epsilonproteobacterial ectosymbionts of a shallow-water marine worm are related to deep-sea hydrothermal vent ectosymbionts.
    Ruehland C; Dubilier N
    Environ Microbiol; 2010 Aug; 12(8):2312-26. PubMed ID: 21966922
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Succession of internal sulfur cycles and sulfur-oxidizing bacterial communities in microaerophilic wastewater biofilms.
    Okabe S; Ito T; Sugita K; Satoh H
    Appl Environ Microbiol; 2005 May; 71(5):2520-9. PubMed ID: 15870342
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Diverse sulfur metabolisms from two subterranean sulfidic spring systems.
    Rossmassler K; Hanson TE; Campbell BJ
    FEMS Microbiol Lett; 2016 Aug; 363(16):. PubMed ID: 27324397
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The versatile in situ gene expression of an Epsilonproteobacteria-dominated biofilm from a hydrothermal chimney.
    Dahle H; Roalkvam I; Thorseth IH; Pedersen RB; Steen IH
    Environ Microbiol Rep; 2013 Apr; 5(2):282-90. PubMed ID: 23584970
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Biogeography of sulfur-oxidizing Acidithiobacillus populations in extremely acidic cave biofilms.
    Jones DS; Schaperdoth I; Macalady JL
    ISME J; 2016 Dec; 10(12):2879-2891. PubMed ID: 27187796
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Linking phylogenetic and functional diversity to nutrient spiraling in microbial mats from Lower Kane Cave (USA).
    Engel AS; Meisinger DB; Porter ML; Payn RA; Schmid M; Stern LA; Schleifer KH; Lee NM
    ISME J; 2010 Jan; 4(1):98-110. PubMed ID: 19675595
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.