These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
162 related articles for article (PubMed ID: 1688537)
1. Limited topographic specificity in the targeting and branching of mammalian retinal axons. Simon DK; O'Leary DD Dev Biol; 1990 Jan; 137(1):125-34. PubMed ID: 1688537 [TBL] [Abstract][Full Text] [Related]
2. Development of topographic order in the mammalian retinocollicular projection. Simon DK; O'Leary DD J Neurosci; 1992 Apr; 12(4):1212-32. PubMed ID: 1313491 [TBL] [Abstract][Full Text] [Related]
3. Relationship of retinotopic ordering of axons in the optic pathway to the formation of visual maps in central targets. Simon DK; O'Leary DD J Comp Neurol; 1991 May; 307(3):393-404. PubMed ID: 1856329 [TBL] [Abstract][Full Text] [Related]
4. Influence of position along the medial-lateral axis of the superior colliculus on the topographic targeting and survival of retinal axons. Simon DK; O'Leary DD Brain Res Dev Brain Res; 1992 Oct; 69(2):167-72. PubMed ID: 1385014 [TBL] [Abstract][Full Text] [Related]
5. Retinotopic order in the optic nerve and superior colliculus during development of the retinocollicular projection in the wallaby (Macropus eugenii). Ding Y; Marotte LR Anat Embryol (Berl); 1997 Aug; 196(2):141-58. PubMed ID: 9278159 [TBL] [Abstract][Full Text] [Related]
6. Inaccuracies in initial growth and arborization of chick retinotectal axons followed by course corrections and axon remodeling to develop topographic order. Nakamura H; O'Leary DD J Neurosci; 1989 Nov; 9(11):3776-95. PubMed ID: 2585055 [TBL] [Abstract][Full Text] [Related]
7. In vivo retinotopic mapping of superior colliculus using manganese-enhanced magnetic resonance imaging. Chan KC; Li J; Kau P; Zhou IY; Cheung MM; Lau C; Yang J; So KF; Wu EX Neuroimage; 2011 Jan; 54(1):389-95. PubMed ID: 20633657 [TBL] [Abstract][Full Text] [Related]
8. Topographic specificity in the retinocollicular projection of the developing ferret: an anterograde tracing study. Chalupa LM; Snider CJ J Comp Neurol; 1998 Mar; 392(1):35-47. PubMed ID: 9482231 [TBL] [Abstract][Full Text] [Related]
9. Plasticity in the development of topographic order in the mammalian retinocollicular projection. Simon DK; Roskies AL; O'Leary DD Dev Biol; 1994 Apr; 162(2):384-93. PubMed ID: 8150202 [TBL] [Abstract][Full Text] [Related]
10. Two stages in the development of a mammalian retinocollicular projection. Mark RF; Freeman TC; Ding Y; Marotte LR Neuroreport; 1993 Nov; 5(2):117-20. PubMed ID: 8110999 [TBL] [Abstract][Full Text] [Related]
11. Responses of retinal axons in vivo and in vitro to position-encoding molecules in the embryonic superior colliculus. Simon DK; O'Leary DD Neuron; 1992 Nov; 9(5):977-89. PubMed ID: 1419004 [TBL] [Abstract][Full Text] [Related]
12. The effects of prenatal and neonatal monocular enucleation on visual topography in the uncrossed retinal pathway to the rat superior colliculus. Jeffery G; Thompson ID Exp Brain Res; 1986; 63(2):351-63. PubMed ID: 3758252 [TBL] [Abstract][Full Text] [Related]
13. Development of primary visual projections occurs entirely postnatally in the fat-tailed dunnart, a marsupial mouse, Sminthopsis crassicaudata. Dunlop SA; Tee LB; Lund RD; Beazley LD J Comp Neurol; 1997 Jul; 384(1):26-40. PubMed ID: 9214538 [TBL] [Abstract][Full Text] [Related]
14. Transcellular retrograde labeling of radial glial cells with WGA-HRP and DiI in neonatal rat and hamster. Kageyama GH; Robertson RT Glia; 1993 Sep; 9(1):70-81. PubMed ID: 7503953 [TBL] [Abstract][Full Text] [Related]
15. Topographic-specific axon branching controlled by ephrin-As is the critical event in retinotectal map development. Yates PA; Roskies AL; McLaughlin T; O'Leary DD J Neurosci; 2001 Nov; 21(21):8548-63. PubMed ID: 11606643 [TBL] [Abstract][Full Text] [Related]
16. Initial stages of retinofugal axon development in the hamster: evidence for two distinct modes of growth. Jhaveri S; Edwards MA; Schneider GE Exp Brain Res; 1991; 87(2):371-82. PubMed ID: 1722759 [TBL] [Abstract][Full Text] [Related]
17. Control of topographic retinal axon branching by inhibitory membrane-bound molecules. Roskies AL; O'Leary DD Science; 1994 Aug; 265(5173):799-803. PubMed ID: 8047886 [TBL] [Abstract][Full Text] [Related]
18. Topographic organization of the retinocollicular projection in the neonatal rat. Yhip JP; Kirby MA Vis Neurosci; 1990 Apr; 4(4):313-29. PubMed ID: 2271447 [TBL] [Abstract][Full Text] [Related]
19. Phr1 is required for proper retinocollicular targeting of nasal-dorsal retinal ganglion cells. Vo BQ; Bloom AJ; Culican SM Vis Neurosci; 2011 Mar; 28(2):175-81. PubMed ID: 21324225 [TBL] [Abstract][Full Text] [Related]
20. The L1 cell adhesion molecule is essential for topographic mapping of retinal axons. Demyanenko GP; Maness PF J Neurosci; 2003 Jan; 23(2):530-8. PubMed ID: 12533613 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]