These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
261 related articles for article (PubMed ID: 16885618)
1. Comparison of conventional, model-based quantitative planar, and quantitative SPECT image processing methods for organ activity estimation using In-111 agents. He B; Frey EC Phys Med Biol; 2006 Aug; 51(16):3967-81. PubMed ID: 16885618 [TBL] [Abstract][Full Text] [Related]
2. A Monte Carlo and physical phantom evaluation of quantitative In-111 SPECT. He B; Du Y; Song X; Segars WP; Frey EC Phys Med Biol; 2005 Sep; 50(17):4169-85. PubMed ID: 16177538 [TBL] [Abstract][Full Text] [Related]
3. Evaluation of quantitative imaging methods for organ activity and residence time estimation using a population of phantoms having realistic variations in anatomy and uptake. He B; Du Y; Segars WP; Wahl RL; Sgouros G; Jacene H; Frey EC Med Phys; 2009 Feb; 36(2):612-9. PubMed ID: 19292001 [TBL] [Abstract][Full Text] [Related]
4. Effects of shortened acquisition time on accuracy and precision of quantitative estimates of organ activity. He B; Frey EC Med Phys; 2010 Apr; 37(4):1807-15. PubMed ID: 20443503 [TBL] [Abstract][Full Text] [Related]
5. EQPlanar: a maximum-likelihood method for accurate organ activity estimation from whole body planar projections. Song N; He B; Wahl RL; Frey EC Phys Med Biol; 2011 Sep; 56(17):5503-24. PubMed ID: 21813961 [TBL] [Abstract][Full Text] [Related]
6. Comparison of residence time estimation methods for radioimmunotherapy dosimetry and treatment planning--Monte Carlo simulation studies. He B; Wahl RL; Du Y; Sgouros G; Jacene H; Flinn I; Frey EC IEEE Trans Med Imaging; 2008 Apr; 27(4):521-30. PubMed ID: 18390348 [TBL] [Abstract][Full Text] [Related]
7. The impact of 3D volume of interest definition on accuracy and precision of activity estimation in quantitative SPECT and planar processing methods. He B; Frey EC Phys Med Biol; 2010 Jun; 55(12):3535-44. PubMed ID: 20508323 [TBL] [Abstract][Full Text] [Related]
8. Evaluation of quantitative (90)Y SPECT based on experimental phantom studies. Minarik D; Sjögreen Gleisner K; Ljungberg M Phys Med Biol; 2008 Oct; 53(20):5689-703. PubMed ID: 18812648 [TBL] [Abstract][Full Text] [Related]
9. The effect of volume-of-interest misregistration on quantitative planar activity and dose estimation. Song N; He B; Frey EC Phys Med Biol; 2010 Sep; 55(18):5483-97. PubMed ID: 20798459 [TBL] [Abstract][Full Text] [Related]
10. Evaluation of accuracy in activity calculations for the conjugate view method from Monte Carlo simulated scintillation camera images using experimental data in an anthropomorphic phantom. Jönsson L; Ljungberg M; Strand SE J Nucl Med; 2005 Oct; 46(10):1679-86. PubMed ID: 16204718 [TBL] [Abstract][Full Text] [Related]
11. Evaluation of quantitative planar 90Y bremsstrahlung whole-body imaging. Minarik D; Ljungberg M; Segars P; Gleisner KS Phys Med Biol; 2009 Oct; 54(19):5873-83. PubMed ID: 19759410 [TBL] [Abstract][Full Text] [Related]
12. Correction of photon attenuation and collimator response for a body-contouring SPECT/CT imaging system. Seo Y; Wong KH; Sun M; Franc BL; Hawkins RA; Hasegawa BH J Nucl Med; 2005 May; 46(5):868-77. PubMed ID: 15872362 [TBL] [Abstract][Full Text] [Related]
13. Accurate dosimetry in 131I radionuclide therapy using patient-specific, 3-dimensional methods for SPECT reconstruction and absorbed dose calculation. Dewaraja YK; Wilderman SJ; Ljungberg M; Koral KF; Zasadny K; Kaminiski MS J Nucl Med; 2005 May; 46(5):840-9. PubMed ID: 15872359 [TBL] [Abstract][Full Text] [Related]
14. Quantification and reduction of the collimator-detector response effect in SPECT by applying a system model during iterative image reconstruction: a simulation study. Kalantari F; Rajabi H; Saghari M Nucl Med Commun; 2012 Mar; 33(3):228-38. PubMed ID: 22134173 [TBL] [Abstract][Full Text] [Related]
15. Effects of motion, attenuation, and scatter corrections on gated cardiac SPECT reconstruction. Niu X; Yang Y; Jin M; Wernick MN; King MA Med Phys; 2011 Dec; 38(12):6571-84. PubMed ID: 22149839 [TBL] [Abstract][Full Text] [Related]
16. Implementation of an iterative scatter correction, the influence of attenuation map quality and their effect on absolute quantitation in SPECT. Vandervoort E; Celler A; Harrop R Phys Med Biol; 2007 Mar; 52(5):1527-45. PubMed ID: 17301469 [TBL] [Abstract][Full Text] [Related]
17. Development and evaluation of a model-based downscatter compensation method for quantitative I-131 SPECT. Song N; Du Y; He B; Frey EC Med Phys; 2011 Jun; 38(6):3193-204. PubMed ID: 21815394 [TBL] [Abstract][Full Text] [Related]
18. Correction for scatter and septal penetration using convolution subtraction methods and model-based compensation in 123I brain SPECT imaging-a Monte Carlo study. Larsson A; Ljungberg M; Mo SJ; Riklund K; Johansson L Phys Med Biol; 2006 Nov; 51(22):5753-67. PubMed ID: 17068363 [TBL] [Abstract][Full Text] [Related]
19. Development and evaluation of an improved quantitative (90)Y bremsstrahlung SPECT method. Rong X; Du Y; Ljungberg M; Rault E; Vandenberghe S; Frey EC Med Phys; 2012 May; 39(5):2346-58. PubMed ID: 22559605 [TBL] [Abstract][Full Text] [Related]
20. Evaluation of a method for activity estimation in Sm-153 EDTMP imaging. Vanzi E; Genovesi D; Di Martino F Med Phys; 2009 Apr; 36(4):1219-29. PubMed ID: 19472629 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]