BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

166 related articles for article (PubMed ID: 16886188)

  • 1. Insulin promotes diacylglycerol kinase activation by different mechanisms in rat cerebral cortex synaptosomes.
    Zulian SE; Ilincheta de Boschero MG; Giusto NM
    J Neurosci Res; 2006 Oct; 84(5):1012-9. PubMed ID: 16886188
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Phosphatidic acid and diacylglycerol generation is regulated by insulin in cerebral cortex synaptosomes from adult and aged rats.
    Salvador GA; Ilincheta de Boschero MG; Pasquaré SJ; Giusto NM
    J Neurosci Res; 2005 Jul; 81(2):244-52. PubMed ID: 15948152
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Agonist-mediated activation of phosphatidylcholine-specific phospholipase C and D in intestinal smooth muscle.
    Murthy KS; Makhlouf GM
    Mol Pharmacol; 1995 Aug; 48(2):293-304. PubMed ID: 7651363
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Platelet-activating factor stimulates phosphatidic acid formation in cultured rat mesangial cells: roles of phospholipase D, diglyceride kinase, and de novo phospholipid synthesis.
    Kester M
    J Cell Physiol; 1993 Aug; 156(2):317-25. PubMed ID: 8393878
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Activation of phosphatidylcholine signalling during oxidative stress in synaptic endings.
    Mateos MV; Uranga RM; Salvador GA; Giusto NM
    Neurochem Int; 2008 Dec; 53(6-8):199-206. PubMed ID: 18692105
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Insulin modifies aging-related inhibition of 1-stearoyl, 2-arachidonoylglycerol phosphorylation in rat synaptic terminals.
    Zulian SE; Ilincheta de Boschero MG; Giusto NM
    Neurochem Int; 2011 Feb; 58(3):330-6. PubMed ID: 21167245
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Phosphatidylcholine hydrolysis and DNA synthesis in cultured retinal capillary pericytes.
    Li W; Liu X; Yanoff M
    Microvasc Res; 1995 May; 49(3):350-63. PubMed ID: 7643754
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Phosphatidylinositol- and phosphatidylcholine-dependent phospholipases C are involved in the mechanism of action of atrial natriuretic factor in cultured rat aortic smooth muscle cells.
    Zannetti A; Luly P; Musanti R; Baldini PM
    J Cell Physiol; 1997 Mar; 170(3):272-8. PubMed ID: 9066784
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Complement C5a activation of phospholipase D in human neutrophils. A major route to the production of phosphatidates and diglycerides.
    Mullmann TJ; Siegel MI; Egan RW; Billah MM
    J Immunol; 1990 Mar; 144(5):1901-8. PubMed ID: 2307846
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Selective activation by atrial natriuretic factor of phosphatidylcholine-specific phospholipase activities in purified heart muscle plasma membranes.
    Baldini PM; Incerpi S; Zannetti A; De Vito P; Luly P
    J Mol Cell Cardiol; 1994 Dec; 26(12):1691-700. PubMed ID: 7731062
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Insulin-stimulated hydrolysis of phosphatidylcholine by phospholipase C and phospholipase D in cultured rat hepatocytes.
    Donchenko V; Zannetti A; Baldini PM
    Biochim Biophys Acta; 1994 Jul; 1222(3):492-500. PubMed ID: 8038220
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Human cardiac phospholipase D activity is tightly controlled by phosphatidylinositol 4,5-bisphosphate.
    Kurz T; Kemken D; Mier K; Weber I; Richardt G
    J Mol Cell Cardiol; 2004 Feb; 36(2):225-32. PubMed ID: 14871550
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Sustained diacylglycerol accumulation resulting from prolonged G protein-coupled receptor agonist-induced phosphoinositide breakdown in hepatocytes.
    Nilssen LS; Dajani O; Christoffersen T; Sandnes D
    J Cell Biochem; 2005 Feb; 94(2):389-402. PubMed ID: 15526278
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Interleukin 4 receptor signaling in human monocytes and U937 cells involves the activation of a phosphatidylcholine-specific phospholipase C: a comparison with chemotactic peptide, FMLP, phospholipase D, and sphingomyelinase.
    Ho JL; Zhu B; He S; Du B; Rothman R
    J Exp Med; 1994 Oct; 180(4):1457-69. PubMed ID: 7931078
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Coexistence of phosphatidylcholine-specific phospholipase C and phospholipase D activities in rat cerebral cortex synaptosomes.
    Mateos MV; Uranga RM; Salvador GA; Giusto NM
    Lipids; 2006 Mar; 41(3):273-80. PubMed ID: 16711602
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Insulin action on polyunsaturated phosphatidic acid formation in rat brain: an "in vitro" model with synaptic endings from cerebral cortex and hippocampus.
    Zulian SE; de Boschero MG; Giusto NM
    Neurochem Res; 2009 Jul; 34(7):1236-48. PubMed ID: 19130221
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Differential modulation of phospholipase D and phosphatidate phosphohydrolase during aging in rat cerebral cortex synaptosomes.
    Salvador GA; Pasquaré SJ; Ilincheta de Boschero MG; Giusto NM
    Exp Gerontol; 2002 Apr; 37(4):543-52. PubMed ID: 11830357
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A novel light-dependent activation of DAGK and PKC in bovine photoreceptor nuclei.
    Natalini PM; Mateos MV; Ilincheta de Boschero MG; Giusto NM
    Exp Eye Res; 2014 Aug; 125():142-55. PubMed ID: 24950064
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Morphological differentiation of N1E-115 neuroblastoma cells by dimethyl sulfoxide activation of lipid second messengers.
    Clejan S; Dotson RS; Wolf EW; Corb MP; Ide CF
    Exp Cell Res; 1996 Apr; 224(1):16-27. PubMed ID: 8612681
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Phospholipase-dependent signalling during the AvrRpm1- and AvrRpt2-induced disease resistance responses in Arabidopsis thaliana.
    Andersson MX; Kourtchenko O; Dangl JL; Mackey D; Ellerström M
    Plant J; 2006 Sep; 47(6):947-59. PubMed ID: 16925603
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.