These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

170 related articles for article (PubMed ID: 16887013)

  • 1. Allowing for spontaneous breathing during high-frequency oscillation: the key for final success?
    Rimensberger PC
    Crit Care; 2006; 10(4):155. PubMed ID: 16887013
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Unloading work of breathing during high-frequency oscillatory ventilation: a bench study.
    van Heerde M; Roubik K; Kopelent V; Plötz FB; Markhorst DG
    Crit Care; 2006; 10(4):R103. PubMed ID: 16848915
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Demand flow facilitates spontaneous breathing during high-frequency oscillatory ventilation in a pig model.
    van Heerde M; Roubik K; Kopelent V; Plötz FB; Markhorst DG
    Crit Care Med; 2009 Mar; 37(3):1068-73. PubMed ID: 19237919
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Design and control of a demand flow system assuring spontaneous breathing of a patient connected to an HFO ventilator.
    Roubík K; Ráfl J; van Heerde M; Markhorst DG
    IEEE Trans Biomed Eng; 2011 Nov; 58(11):3225-33. PubMed ID: 21859597
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A protocol for high-frequency oscillatory ventilation in adults: results from a roundtable discussion.
    Fessler HE; Derdak S; Ferguson ND; Hager DN; Kacmarek RM; Thompson BT; Brower RG
    Crit Care Med; 2007 Jul; 35(7):1649-54. PubMed ID: 17522576
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Spontaneous breathing during high-frequency oscillatory ventilation improves regional lung characteristics in experimental lung injury.
    van Heerde M; Roubik K; Kopelent V; Kneyber MC; Markhorst DG
    Acta Anaesthesiol Scand; 2010 Nov; 54(10):1248-56. PubMed ID: 21039346
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Respiratory controversies in the critical care setting. Does airway pressure release ventilation offer important new advantages in mechanical ventilator support?
    Myers TR; MacIntyre NR
    Respir Care; 2007 Apr; 52(4):452-8; discussion 458-60. PubMed ID: 17417979
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Tidal volume delivery during high-frequency oscillatory ventilation in adults with acute respiratory distress syndrome.
    Hager DN; Fessler HE; Kaczka DW; Shanholtz CB; Fuld MK; Simon BA; Brower RG
    Crit Care Med; 2007 Jun; 35(6):1522-9. PubMed ID: 17440422
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Feasibility of weaning and direct extubation from open lung high-frequency ventilation in preterm infants.
    van Velzen A; De Jaegere A; van der Lee J; van Kaam A
    Pediatr Crit Care Med; 2009 Jan; 10(1):71-5. PubMed ID: 19057441
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The spontaneous breathing pattern and work of breathing of patients with acute respiratory distress syndrome and acute lung injury.
    Kallet RH; Hemphill JC; Dicker RA; Alonso JA; Campbell AR; Mackersie RC; Katz JA
    Respir Care; 2007 Aug; 52(8):989-95. PubMed ID: 17650353
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Respiratory controversies in the critical care setting. Does high-frequency ventilation offer benefits over conventional ventilation in adult patients with acute respiratory distress syndrome?
    Fessler HE; Hess DR
    Respir Care; 2007 May; 52(5):595-605; discussion 606-8. PubMed ID: 17484791
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Optimal ventilator settings in acute lung injury and acute respiratory distress syndrome.
    Yilmaz M; Gajic O
    Eur J Anaesthesiol; 2008 Feb; 25(2):89-96. PubMed ID: 18005469
    [TBL] [Abstract][Full Text] [Related]  

  • 13. History of high frequency oscillation.
    Bryan AC; Cox PN
    Schweiz Med Wochenschr; 1999 Oct; 129(43):1613-6. PubMed ID: 10582261
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Automatic tube compensation (ATC).
    Guttmann J; Haberthür C; Mols G; Lichtwarck-Aschoff M
    Minerva Anestesiol; 2002 May; 68(5):369-77. PubMed ID: 12029248
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Breathing comfort associated with different modes of ventilation: a comparative study in non-intubated healthy Nepalese volunteers.
    Baral PR; Bhattarai B; Pande R; Bhadani U; Bhattacharya A; Tripathi M
    Kathmandu Univ Med J (KUMJ); 2007; 5(3):302-6. PubMed ID: 18604044
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Interfacing spontaneous breathing and mechanical ventilation. New insights.
    Hedenstierna G; Lichtwarck-Aschoff M
    Minerva Anestesiol; 2006 Apr; 72(4):183-98. PubMed ID: 16570030
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Feasibility of very high-frequency ventilation in adults with acute respiratory distress syndrome.
    Fessler HE; Hager DN; Brower RG
    Crit Care Med; 2008 Apr; 36(4):1043-8. PubMed ID: 18379227
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Insights in pediatric ventilation: timing of intubation, ventilatory strategies, and weaning.
    Turner DA; Arnold JH
    Curr Opin Crit Care; 2007 Feb; 13(1):57-63. PubMed ID: 17198050
    [TBL] [Abstract][Full Text] [Related]  

  • 19. New modalities of mechanical ventilation: high-frequency oscillatory ventilation and airway pressure release ventilation.
    Fan E; Stewart TE
    Clin Chest Med; 2006 Dec; 27(4):615-25; abstract viii-ix. PubMed ID: 17085250
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Weaning from ventilatory support.
    Epstein SK
    Curr Opin Crit Care; 2009 Feb; 15(1):36-43. PubMed ID: 19179869
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.