BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

357 related articles for article (PubMed ID: 16887169)

  • 61. [Inventories of atmospheric arsenic emissions from coal combustion in China, 2005].
    Tian HZ; Qu YP
    Huan Jing Ke Xue; 2009 Apr; 30(4):956-62. PubMed ID: 19544989
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Mercury policy and regulations for coal-fired power plants.
    Rallo M; Lopez-Anton MA; Contreras ML; Maroto-Valer MM
    Environ Sci Pollut Res Int; 2012 May; 19(4):1084-96. PubMed ID: 22090257
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Future emissions and atmospheric fate of HFC-1234yf from mobile air conditioners in Europe.
    Henne S; Shallcross DE; Reimann S; Xiao P; Brunner D; O'Doherty S; Buchmann B
    Environ Sci Technol; 2012 Feb; 46(3):1650-8. PubMed ID: 22225403
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Spatial assessment of net mercury emissions from the use of fluorescent bulbs.
    Eckelman MJ; Anastas PT; Zimmerman JB
    Environ Sci Technol; 2008 Nov; 42(22):8564-70. PubMed ID: 19068849
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Human exposure to mercury in the vicinity of chlor-alkali plant.
    Gibicar D; Horvat M; Logar M; Fajon V; Falnoga I; Ferrara R; Lanzillotta E; Ceccarini C; Mazzolai B; Denby B; Pacyna J
    Environ Res; 2009 May; 109(4):355-67. PubMed ID: 19286175
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Atmospheric mercury exchange with a tallgrass prairie ecosystem housed in mesocosms.
    Stamenkovic J; Gustin MS; Arnone JA; Johnson DW; Larsen JD; Verburg PS
    Sci Total Environ; 2008 Nov; 406(1-2):227-38. PubMed ID: 18775555
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Intercomparison study of atmospheric mercury models: 1. Comparison of models with short-term measurements.
    Ryaboshapko A; Bullock OR; Christensen J; Cohen M; Dastoor A; Ilyin I; Petersen G; Syrakov D; Artz RS; Davignon D; Draxler RR; Munthe J
    Sci Total Environ; 2007 Apr; 376(1-3):228-40. PubMed ID: 17324448
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Biogenic emissions of isoprenoids and NO in China and comparison to anthropogenic emissions.
    Tie X; Li G; Ying Z; Guenther A; Madronich S
    Sci Total Environ; 2006 Dec; 371(1-3):238-51. PubMed ID: 17027064
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Mercury isotopic evidence for multiple mercury sources in coal from the Illinois basin.
    Lefticariu L; Blum JD; Gleason JD
    Environ Sci Technol; 2011 Feb; 45(4):1724-9. PubMed ID: 21222443
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Lead emissions from road transport in Europe: a revision of current estimates using various estimation methodologies.
    Denier van der Gon H; Appelman W
    Sci Total Environ; 2009 Oct; 407(20):5367-72. PubMed ID: 19625074
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Atmospheric emission characteristics and control policies of five precedent-controlled toxic heavy metals from anthropogenic sources in China.
    Cheng K; Wang Y; Tian H; Gao X; Zhang Y; Wu X; Zhu C; Gao J
    Environ Sci Technol; 2015 Jan; 49(2):1206-14. PubMed ID: 25526283
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Study on the reduction of atmospheric mercury emissions from mine waste enriched soils through native grass cover in the Mt. Amiata region of Italy.
    Fantozzi L; Ferrara R; Dini F; Tamburello L; Pirrone N; Sprovieri F
    Environ Res; 2013 Aug; 125():69-74. PubMed ID: 23477569
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Adsorbents for capturing mercury in coal-fired boiler flue gas.
    Yang H; Xu Z; Fan M; Bland AE; Judkins RR
    J Hazard Mater; 2007 Jul; 146(1-2):1-11. PubMed ID: 17544578
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Mercury vapor levels in exhaust air from dental vacuum systems.
    Stone ME; Cohen ME; Debban BA
    Dent Mater; 2007 May; 23(5):527-32. PubMed ID: 16678246
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Air pollution combustion emissions: characterization of causative agents and mechanisms associated with cancer, reproductive, and cardiovascular effects.
    Lewtas J
    Mutat Res; 2007; 636(1-3):95-133. PubMed ID: 17951105
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Greenhouse gas emission reduction and environmental quality improvement from implementation of aerobic waste treatment systems in swine farms.
    Vanotti MB; Szogi AA; Vives CA
    Waste Manag; 2008; 28(4):759-66. PubMed ID: 18060761
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Reducing mercury emissions from coal-fired power plants in India: Possibilities and challenges.
    Joy A; Qureshi A
    Ambio; 2023 Jan; 52(1):242-252. PubMed ID: 35997988
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Total gaseous concentrations in mercury in Seoul, Korea: Local sources compared to long-range transport from China and Japan.
    Choi EM; Kim SH; Holsen TM; Yi SM
    Environ Pollut; 2009 Mar; 157(3):816-22. PubMed ID: 19110355
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Options for near-term phaseout of CO(2) emissions from coal use in the United States.
    Kharecha PA; Kutscher CF; Hansen JE; Mazria E
    Environ Sci Technol; 2010 Jun; 44(11):4050-62. PubMed ID: 20429611
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Ignoring emissions of Hg from coal ash and desulfurized gypsum will lead to ineffective mercury control in coal-fired power plants in China.
    Yang Y; Huang Q; Wang Q
    Environ Sci Technol; 2012 Mar; 46(6):3058-9. PubMed ID: 22428843
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 18.