These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

214 related articles for article (PubMed ID: 1688779)

  • 1. Cochlear potentials and auditory evoked potentials in the caiman (Caiman crocodilus (L.)).
    Smolders JW; Caird DM; Klinke R
    Electroencephalogr Clin Neurophysiol; 1990 Feb; 75(2):97-104. PubMed ID: 1688779
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Brain-stem auditory evoked potentials in the alligator. Effects of temperature and hypoxia.
    Strain GM; Tucker TA; Graham MC; O'Malley NA
    Electroencephalogr Clin Neurophysiol; 1987 Jul; 67(1):68-76. PubMed ID: 2439283
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Quantitative investigation of temperature effects in primary auditory fibers in Caiman crocodilus.
    Smolders J; Klinke R
    Arch Otorhinolaryngol; 1982; 234(2):203-4. PubMed ID: 7092709
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Synchronized responses of primary auditory fibre-populations in Caiman crocodilus (L.) to single tones and clicks.
    Smolders JW; Klinke R
    Hear Res; 1986; 24(2):89-103. PubMed ID: 3771380
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Auditory brain stem potentials evoked by clicks in notch-filtered masking noise.
    Pratt H; Bleich N
    Electroencephalogr Clin Neurophysiol; 1982 Apr; 53(4):417-26. PubMed ID: 6175503
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Brain-stem auditory evoked potentials in the rat: effects of gender, stimulus characteristics and ethanol sedation.
    Church MW; Williams HL; Holloway JA
    Electroencephalogr Clin Neurophysiol; 1984 Jul; 59(4):328-39. PubMed ID: 6203722
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Postnatal development of the brainstem auditory evoked potential and far-field cochlear microphonic in non-sedated rat pups.
    Church MW; Williams HL; Holloway JA
    Brain Res; 1984 May; 316(1):23-31. PubMed ID: 6733535
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The temperature dependency of neural and hair cell responses evoked by high frequencies.
    Brown MC; Smith DI; Nuttall AL
    J Acoust Soc Am; 1983 May; 73(5):1662-70. PubMed ID: 6863743
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Discharge properties of primary auditory fibres in Caiman crocodilus: comparisons and contrasts to the mammalian auditory nerve.
    Klinke R; Pause M
    Exp Brain Res; 1980 Jan; 38(2):137-50. PubMed ID: 7358100
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Compound action potentials recorded from the intracranial portion of the auditory nerve in man: effects of stimulus intensity and polarity.
    Møller AR; Jho HD
    Audiology; 1991; 30(3):142-63. PubMed ID: 1953444
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The interaction between sex and click polarity in brain-stem auditory potentials evoked from control subjects of Oriental and Caucasian origin.
    Chan YW; Woo EK; Hammond SR; Yiannikas C; McLeod JG
    Electroencephalogr Clin Neurophysiol; 1988; 71(1):77-80. PubMed ID: 2446849
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Comparison between auditory brain stem responses evoked by rarefaction and condensation step functions and clicks.
    Tietze G; Pantev C
    Audiology; 1986; 25(1):44-53. PubMed ID: 3954683
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effects of rise time on simultaneously recorded auditory-evoked potentials from the early, middle and late ranges.
    Kodera K; Hink RF; Yamada O; Suzuki JI
    Audiology; 1979; 18(5):395-402. PubMed ID: 496722
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Brainstem and cochlea potentials evoked by rarefaction and condensation single-slope stimuli. A preliminary report.
    Gerull G; Mrowinski D; Janssen T; Anft D
    Scand Audiol; 1985; 14(3):141-50. PubMed ID: 4059852
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Click polarity inversion effects upon the human brainstem auditory evoked potential.
    Kevanishvili Z; Aphonchenko V
    Scand Audiol; 1981; 10(3):141-7. PubMed ID: 7302521
    [TBL] [Abstract][Full Text] [Related]  

  • 16. High-synchrony cochlear compound action potentials evoked by rising frequency-swept tone bursts.
    Shore SE; Nuttall AL
    J Acoust Soc Am; 1985 Oct; 78(4):1286-95. PubMed ID: 3840500
    [TBL] [Abstract][Full Text] [Related]  

  • 17. On the origin of the compound action potentials (N1, N2) of the cochlea of the rat.
    Møller AR
    Exp Neurol; 1983 Jun; 80(3):633-44. PubMed ID: 6852156
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Brain-stem auditory evoked potentials in squirrel monkey (Saimiri sciureus).
    Pineda JA; Holmes TC; Swick D; Foote SL
    Electroencephalogr Clin Neurophysiol; 1989 Dec; 73(6):532-43. PubMed ID: 2480887
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Neural generators of the brain-stem auditory evoked potentials (BAEPs) in the rhesus monkey.
    Møller AR; Burgess J
    Electroencephalogr Clin Neurophysiol; 1986 Sep; 65(5):361-72. PubMed ID: 2427327
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [Effect of thiamine on auditory evoked potentials of the guinea pig].
    Romanenko AV; Chudnovskiĭ SI; Poliakov AN
    Neirofiziologiia; 1986; 18(5):654-60. PubMed ID: 3022168
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.