BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

125 related articles for article (PubMed ID: 16887802)

  • 21. Higher-plant medium- and short-chain acyl-CoA oxidases: identification, purification and characterization of two novel enzymes of eukaryotic peroxisomal beta-oxidation.
    Hooks MA; Bode K; Couée I
    Biochem J; 1996 Dec; 320 ( Pt 2)(Pt 2):607-14. PubMed ID: 8973574
    [TBL] [Abstract][Full Text] [Related]  

  • 22. IBR3, a novel peroxisomal acyl-CoA dehydrogenase-like protein required for indole-3-butyric acid response.
    Zolman BK; Nyberg M; Bartel B
    Plant Mol Biol; 2007 May; 64(1-2):59-72. PubMed ID: 17277896
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Cofactors and metabolites as potential stabilizers of mitochondrial acyl-CoA dehydrogenases.
    Lucas TG; Henriques BJ; Rodrigues JV; Bross P; Gregersen N; Gomes CM
    Biochim Biophys Acta; 2011 Dec; 1812(12):1658-63. PubMed ID: 21968293
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Mitochondrial short-chain acyl-CoA dehydrogenase of human liver and kidney can function as an oxidase.
    Vanhove G; Van Veldhoven PP; Eyssen HJ; Mannaerts GP
    Biochem J; 1993 May; 292 ( Pt 1)(Pt 1):23-30. PubMed ID: 8503850
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Purification and characterization of a novel pumpkin short-chain acyl-coenzyme A oxidase with structural similarity to acyl-coenzyme A dehydrogenases.
    De Bellis L; Gonzali S; Alpi A; Hayashi H; Hayashi M; Nishimura M
    Plant Physiol; 2000 May; 123(1):327-34. PubMed ID: 10806249
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Biochemical and molecular characterization of ACH2, an acyl-CoA thioesterase from Arabidopsis thaliana.
    Tilton GB; Shockey JM; Browse J
    J Biol Chem; 2004 Feb; 279(9):7487-94. PubMed ID: 14660652
    [TBL] [Abstract][Full Text] [Related]  

  • 27. FT-IR spectroscopic studies on the molecular mechanism for substrate specificity/activation of medium-chain acyl-CoA dehydrogenase.
    Nishina Y; Sato K; Tamaoki H; Setoyama C; Miura R; Shiga K
    J Biochem; 2009 Sep; 146(3):351-7. PubMed ID: 19470521
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Molecular Basis for Converting (2S)-Methylsuccinyl-CoA Dehydrogenase into an Oxidase.
    Burgener S; Schwander T; Romero E; Fraaije MW; Erb TJ
    Molecules; 2017 Dec; 23(1):. PubMed ID: 29283425
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Crystal structures of the wild type and the Glu376Gly/Thr255Glu mutant of human medium-chain acyl-CoA dehydrogenase: influence of the location of the catalytic base on substrate specificity.
    Lee HJ; Wang M; Paschke R; Nandy A; Ghisla S; Kim JJ
    Biochemistry; 1996 Sep; 35(38):12412-20. PubMed ID: 8823176
    [TBL] [Abstract][Full Text] [Related]  

  • 30. The functions of the flavin contact residues, alphaArg249 and betaTyr16, in human electron transfer flavoprotein.
    Dwyer TM; Zhang L; Muller M; Marrugo F; Frerman F
    Biochim Biophys Acta; 1999 Aug; 1433(1-2):139-52. PubMed ID: 10446367
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Promoter trapping of a novel medium-chain acyl-CoA oxidase, which is induced transcriptionally during Arabidopsis seed germination.
    Eastmond PJ; Hooks MA; Williams D; Lange P; Bechtold N; Sarrobert C; Nussaume L; Graham IA
    J Biol Chem; 2000 Nov; 275(44):34375-81. PubMed ID: 10918060
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Crystal structures of apo- and FAD-bound human peroxisomal acyl-CoA oxidase provide mechanistic basis explaining clinical observations.
    Sonani RR; Blat A; Dubin G
    Int J Biol Macromol; 2022 Apr; 205():203-210. PubMed ID: 35149097
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Crystal structures of medium-chain acyl-CoA dehydrogenase from pig liver mitochondria with and without substrate.
    Kim JJ; Wang M; Paschke R
    Proc Natl Acad Sci U S A; 1993 Aug; 90(16):7523-7. PubMed ID: 8356049
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Tyrosine Residues 232 and 401 Play a Critical Role in the Binding of the Cofactor FAD of Acyl-coA Oxidase.
    Deng S; Li P; Wang Y; Zeng J
    Appl Biochem Biotechnol; 2018 Aug; 185(4):875-883. PubMed ID: 29372418
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Oxidase activity of the acyl-CoA dehydrogenases.
    DuPlessis ER; Pellett J; Stankovich MT; Thorpe C
    Biochemistry; 1998 Jul; 37(29):10469-77. PubMed ID: 9671517
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Structure-function correlation of fatty acyl-CoA dehydrogenase and fatty acyl-CoA oxidase.
    Rojas C; Schmidt J; Lee MY; Gustafson WG; McFarland JT
    Biochemistry; 1985 Jun; 24(12):2947-54. PubMed ID: 4040392
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Extensive domain motion and electron transfer in the human electron transferring flavoprotein.medium chain Acyl-CoA dehydrogenase complex.
    Toogood HS; van Thiel A; Basran J; Sutcliffe MJ; Scrutton NS; Leys D
    J Biol Chem; 2004 Jul; 279(31):32904-12. PubMed ID: 15159392
    [TBL] [Abstract][Full Text] [Related]  

  • 38. The reductive half-reaction in acyl-CoA oxidase from Candida tropicalis: interaction with acyl-CoA analogues and an unusual thioesterase activity.
    Wang R; Thorpe C
    Arch Biochem Biophys; 1991 May; 286(2):504-10. PubMed ID: 1897972
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Insights into Medium-chain Acyl-CoA Dehydrogenase Structure by Molecular Dynamics Simulations.
    Bonito CA; Leandro P; Ventura FV; Guedes RC
    Chem Biol Drug Des; 2016 Aug; 88(2):281-92. PubMed ID: 26992026
    [TBL] [Abstract][Full Text] [Related]  

  • 40. The acyl-CoA oxidases from the yeast Yarrowia lipolytica: characterization of Aox2p.
    Luo YS; Nicaud JM; Van Veldhoven PP; Chardot T
    Arch Biochem Biophys; 2002 Nov; 407(1):32-8. PubMed ID: 12392712
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.