These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

207 related articles for article (PubMed ID: 16888037)

  • 41. A Slit/miR-218/Robo regulatory loop is required during heart tube formation in zebrafish.
    Fish JE; Wythe JD; Xiao T; Bruneau BG; Stainier DY; Srivastava D; Woo S
    Development; 2011 Apr; 138(7):1409-19. PubMed ID: 21385766
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Post-guidance signaling by extracellular matrix-associated Slit/Slit-N maintains fasciculation and position of axon tracts in the nerve cord.
    Bhat KM
    PLoS Genet; 2017 Nov; 13(11):e1007094. PubMed ID: 29155813
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Heparan sulfate proteoglycan syndecan promotes axonal and myotube guidance by slit/robo signaling.
    Steigemann P; Molitor A; Fellert S; Jäckle H; Vorbrüggen G
    Curr Biol; 2004 Feb; 14(3):225-30. PubMed ID: 14761655
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Functional diversity of Robo receptor immunoglobulin domains promotes distinct axon guidance decisions.
    Evans TA; Bashaw GJ
    Curr Biol; 2010 Mar; 20(6):567-72. PubMed ID: 20206526
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Gia/Mthl5 is an aorta specific GPCR required for Drosophila heart tube morphology and normal pericardial cell positioning.
    Patel MV; Zhu JY; Jiang Z; Richman A; VanBerkum MF; Han Z
    Dev Biol; 2016 Jun; 414(1):100-7. PubMed ID: 26994946
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Cdc42 is required in a genetically distinct subset of cardiac cells during Drosophila dorsal vessel closure.
    Swope D; Kramer J; King TR; Cheng YS; Kramer SG
    Dev Biol; 2014 Aug; 392(2):221-32. PubMed ID: 24949939
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Vilse, a conserved Rac/Cdc42 GAP mediating Robo repulsion in tracheal cells and axons.
    Lundström A; Gallio M; Englund C; Steneberg P; Hemphälä J; Aspenström P; Keleman K; Falileeva L; Dickson BJ; Samakovlis C
    Genes Dev; 2004 Sep; 18(17):2161-71. PubMed ID: 15342493
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Cables links Robo-bound Abl kinase to N-cadherin-bound beta-catenin to mediate Slit-induced modulation of adhesion and transcription.
    Rhee J; Buchan T; Zukerberg L; Lilien J; Balsamo J
    Nat Cell Biol; 2007 Aug; 9(8):883-92. PubMed ID: 17618275
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Drosophila central brain formation requires Robo proteins.
    Nicolas E; Preat T
    Dev Genes Evol; 2005 Oct; 215(10):530-6. PubMed ID: 16003521
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Slit and robo expression in the developing mouse lung.
    Greenberg JM; Thompson FY; Brooks SK; Shannon JM; Akeson AL
    Dev Dyn; 2004 Jun; 230(2):350-60. PubMed ID: 15162513
    [TBL] [Abstract][Full Text] [Related]  

  • 51. The function of leak and kuzbanian during growth cone and cell migration.
    Schimmelpfeng K; Gögel S; Klämbt C
    Mech Dev; 2001 Aug; 106(1-2):25-36. PubMed ID: 11472832
    [TBL] [Abstract][Full Text] [Related]  

  • 52. The Slit/Robo system suppresses hepatocyte growth factor-dependent invasion and morphogenesis.
    Stella MC; Trusolino L; Comoglio PM
    Mol Biol Cell; 2009 Jan; 20(2):642-57. PubMed ID: 19005219
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Slit/Robo signaling is necessary to confine early neural crest cells to the ventral migratory pathway in the trunk.
    Jia L; Cheng L; Raper J
    Dev Biol; 2005 Jun; 282(2):411-21. PubMed ID: 15950606
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Robo family of proteins exhibit differential expression in mouse spinal cord and Robo-Slit interaction is required for midline crossing in vertebrate spinal cord.
    Mambetisaeva ET; Andrews W; Camurri L; Annan A; Sundaresan V
    Dev Dyn; 2005 May; 233(1):41-51. PubMed ID: 15768400
    [TBL] [Abstract][Full Text] [Related]  

  • 55. [Current progress in functions of axon guidance molecule Slit and underlying molecular mechanism].
    Yu Q; Zhou QS; Zhao X; Liu QX
    Sheng Li Xue Bao; 2012 Apr; 64(2):220-30. PubMed ID: 22513474
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Structural and functional analysis of slit and heparin binding to immunoglobulin-like domains 1 and 2 of Drosophila Robo.
    Fukuhara N; Howitt JA; Hussain SA; Hohenester E
    J Biol Chem; 2008 Jun; 283(23):16226-34. PubMed ID: 18359766
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Non-cell autonomous control of precerebellar neuron migration by Slit and Robo proteins.
    Dominici C; Rappeneau Q; Zelina P; Fouquet S; Chédotal A
    Development; 2018 Jan; 145(2):. PubMed ID: 29343636
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Pericardin, a Drosophila type IV collagen-like protein is involved in the morphogenesis and maintenance of the heart epithelium during dorsal ectoderm closure.
    Chartier A; Zaffran S; Astier M; Sémériva M; Gratecos D
    Development; 2002 Jul; 129(13):3241-53. PubMed ID: 12070098
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Structure and Function of Roundabout Receptors.
    Bisiak F; McCarthy AA
    Subcell Biochem; 2019; 93():291-319. PubMed ID: 31939155
    [TBL] [Abstract][Full Text] [Related]  

  • 60. robo2 and robo3 interact with eagle to regulate serotonergic neuron differentiation.
    Couch JA; Chen J; Rieff HI; Uri EM; Condron BG
    Development; 2004 Mar; 131(5):997-1006. PubMed ID: 14973268
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.