BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

181 related articles for article (PubMed ID: 16888089)

  • 1. Acetylation of GATA-1 is required for chromatin occupancy.
    Lamonica JM; Vakoc CR; Blobel GA
    Blood; 2006 Dec; 108(12):3736-8. PubMed ID: 16888089
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Distinct functions of dispersed GATA factor complexes at an endogenous gene locus.
    Grass JA; Jing H; Kim SI; Martowicz ML; Pal S; Blobel GA; Bresnick EH
    Mol Cell Biol; 2006 Oct; 26(19):7056-67. PubMed ID: 16980610
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Differential GATA factor stabilities: implications for chromatin occupancy by structurally similar transcription factors.
    Lurie LJ; Boyer ME; Grass JA; Bresnick EH
    Biochemistry; 2008 Jan; 47(3):859-69. PubMed ID: 18154321
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Bromodomain protein Brd3 associates with acetylated GATA1 to promote its chromatin occupancy at erythroid target genes.
    Lamonica JM; Deng W; Kadauke S; Campbell AE; Gamsjaeger R; Wang H; Cheng Y; Billin AN; Hardison RC; Mackay JP; Blobel GA
    Proc Natl Acad Sci U S A; 2011 May; 108(22):E159-68. PubMed ID: 21536911
    [TBL] [Abstract][Full Text] [Related]  

  • 5. GATA-1 self-association controls erythroid development in vivo.
    Shimizu R; Trainor CD; Nishikawa K; Kobayashi M; Ohneda K; Yamamoto M
    J Biol Chem; 2007 May; 282(21):15862-71. PubMed ID: 17374603
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Forced FOG1 expression in erythroleukemia cells: Induction of erythroid genes and repression of myelo-lymphoid transcription factor PU.1.
    Fujiwara T; Sasaki K; Saito K; Hatta S; Ichikawa S; Kobayashi M; Okitsu Y; Fukuhara N; Onishi Y; Harigae H
    Biochem Biophys Res Commun; 2017 Apr; 485(2):380-387. PubMed ID: 28216155
    [TBL] [Abstract][Full Text] [Related]  

  • 7. GATA factor switching from GATA2 to GATA1 contributes to erythroid differentiation.
    Suzuki M; Kobayashi-Osaki M; Tsutsumi S; Pan X; Ohmori S; Takai J; Moriguchi T; Ohneda O; Ohneda K; Shimizu R; Kanki Y; Kodama T; Aburatani H; Yamamoto M
    Genes Cells; 2013 Nov; 18(11):921-33. PubMed ID: 23911012
    [TBL] [Abstract][Full Text] [Related]  

  • 8. GATA-1-dependent histone H3K27 acetylation mediates erythroid cell-specific chromatin interaction between CTCF sites.
    Kim YW; Kang Y; Kang J; Kim A
    FASEB J; 2020 Nov; 34(11):14736-14749. PubMed ID: 32924169
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Discovering hematopoietic mechanisms through genome-wide analysis of GATA factor chromatin occupancy.
    Fujiwara T; O'Geen H; Keles S; Blahnik K; Linnemann AK; Kang YA; Choi K; Farnham PJ; Bresnick EH
    Mol Cell; 2009 Nov; 36(4):667-81. PubMed ID: 19941826
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Chromatin occupancy analysis reveals genome-wide GATA factor switching during hematopoiesis.
    Doré LC; Chlon TM; Brown CD; White KP; Crispino JD
    Blood; 2012 Apr; 119(16):3724-33. PubMed ID: 22383799
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cofactor-mediated restriction of GATA-1 chromatin occupancy coordinates lineage-specific gene expression.
    Chlon TM; Doré LC; Crispino JD
    Mol Cell; 2012 Aug; 47(4):608-21. PubMed ID: 22771118
    [TBL] [Abstract][Full Text] [Related]  

  • 12. KLF1 stabilizes GATA-1 and TAL1 occupancy in the human β-globin locus.
    Kang Y; Kim YW; Yun J; Shin J; Kim A
    Biochim Biophys Acta; 2015 Mar; 1849(3):282-9. PubMed ID: 25528728
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Expression of GATA-1 in a non-hematopoietic cell line induces beta-globin locus control region chromatin structure remodeling and an erythroid pattern of gene expression.
    Layon ME; Ackley CJ; West RJ; Lowrey CH
    J Mol Biol; 2007 Feb; 366(3):737-44. PubMed ID: 17196618
    [TBL] [Abstract][Full Text] [Related]  

  • 14. GATA-1-mediated transcriptional repression yields persistent transcription factor IIB-chromatin complexes.
    Martowicz ML; Grass JA; Bresnick EH
    J Biol Chem; 2006 Dec; 281(49):37345-52. PubMed ID: 16963445
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Direct protein interactions are responsible for Ikaros-GATA and Ikaros-Cdk9 cooperativeness in hematopoietic cells.
    Bottardi S; Mavoungou L; Bourgoin V; Mashtalir N; Affar el B; Milot E
    Mol Cell Biol; 2013 Aug; 33(16):3064-76. PubMed ID: 23732910
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Exchange of GATA factors mediates transitions in looped chromatin organization at a developmentally regulated gene locus.
    Jing H; Vakoc CR; Ying L; Mandat S; Wang H; Zheng X; Blobel GA
    Mol Cell; 2008 Feb; 29(2):232-42. PubMed ID: 18243117
    [TBL] [Abstract][Full Text] [Related]  

  • 17. HDAC1 is required for GATA-1 transcription activity, global chromatin occupancy and hematopoiesis.
    Yan B; Yang J; Kim MY; Luo H; Cesari N; Yang T; Strouboulis J; Zhang J; Hardison R; Huang S; Qiu Y
    Nucleic Acids Res; 2021 Sep; 49(17):9783-9798. PubMed ID: 34450641
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Insights into GATA-1-mediated gene activation versus repression via genome-wide chromatin occupancy analysis.
    Yu M; Riva L; Xie H; Schindler Y; Moran TB; Cheng Y; Yu D; Hardison R; Weiss MJ; Orkin SH; Bernstein BE; Fraenkel E; Cantor AB
    Mol Cell; 2009 Nov; 36(4):682-95. PubMed ID: 19941827
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Context-dependent function of regulatory elements and a switch in chromatin occupancy between GATA3 and GATA2 regulate Gata2 transcription during trophoblast differentiation.
    Ray S; Dutta D; Rumi MA; Kent LN; Soares MJ; Paul S
    J Biol Chem; 2009 Feb; 284(8):4978-88. PubMed ID: 19106099
    [TBL] [Abstract][Full Text] [Related]  

  • 20. GATA switches as developmental drivers.
    Bresnick EH; Lee HY; Fujiwara T; Johnson KD; Keles S
    J Biol Chem; 2010 Oct; 285(41):31087-93. PubMed ID: 20670937
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.