These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

74 related articles for article (PubMed ID: 16888341)

  • 1. Marker-based prediction of the parental genome contribution to inbred lines derived from biparental crosses.
    Frisch M; Melchinger AE
    Genetics; 2006 Oct; 174(2):795-803. PubMed ID: 16888341
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Variance of the parental genome contribution to inbred lines derived from biparental crosses.
    Frisch M; Melchinger AE
    Genetics; 2007 May; 176(1):477-88. PubMed ID: 17409089
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Genomic Prediction Within and Across Biparental Families: Means and Variances of Prediction Accuracy and Usefulness of Deterministic Equations.
    Schopp P; Müller D; Wientjes YCJ; Melchinger AE
    G3 (Bethesda); 2017 Nov; 7(11):3571-3586. PubMed ID: 28916649
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Usefulness Criterion and Post-selection Parental Contributions in Multi-parental Crosses: Application to Polygenic Trait Introgression.
    Allier A; Moreau L; Charcosset A; Teyssèdre S; Lehermeier C
    G3 (Bethesda); 2019 May; 9(5):1469-1479. PubMed ID: 30819823
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Genomic selection of crossing partners on basis of the expected mean and variance of their derived lines.
    Osthushenrich T; Frisch M; Herzog E
    PLoS One; 2017; 12(12):e0188839. PubMed ID: 29200436
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Incorporation of tropical maize germplasm into inbred lines derived from temperate x temperate-adapted tropical line crosses: agronomic and molecular assessment.
    Lewis RS; Goodman MM
    Theor Appl Genet; 2003 Sep; 107(5):798-805. PubMed ID: 12861363
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Two-generation marker-aided backcrossing for rapid conversion of normal maize lines to quality protein maize (QPM).
    Babu R; Nair SK; Kumar A; Venkatesh S; Sekhar JC; Singh NN; Srinivasan G; Gupta HS
    Theor Appl Genet; 2005 Sep; 111(5):888-97. PubMed ID: 16034586
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Genomewide predictions from maize single-cross data.
    Massman JM; Gordillo A; Lorenzana RE; Bernardo R
    Theor Appl Genet; 2013 Jan; 126(1):13-22. PubMed ID: 22886355
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Evaluation of SRAP marker efficiency in identifying the relationship between genetic diversities of corn inbred lines with seed quantity and quality in derived hybrids.
    Fareghi S; Mirlohi AF; Saeidi G; Khamisabadi H
    Cell Mol Biol (Noisy-le-grand); 2019 Apr; 65(4):6-14. PubMed ID: 31078146
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Sensitivity to prior specification in Bayesian genome-based prediction models.
    Lehermeier C; Wimmer V; Albrecht T; Auinger HJ; Gianola D; Schmid VJ; Schön CC
    Stat Appl Genet Mol Biol; 2013 Jun; 12(3):375-91. PubMed ID: 23629460
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Molecular marker-based prediction of hybrid performance in maize using unbalanced data from multiple experiments with factorial crosses.
    Schrag TA; Möhring J; Maurer HP; Dhillon BS; Melchinger AE; Piepho HP; Sørensen AP; Frisch M
    Theor Appl Genet; 2009 Feb; 118(4):741-51. PubMed ID: 19048224
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Identification of essentially derived varieties with molecular markers: an approach based on statistical test theory and computer simulations.
    Heckenberger M; Bohn M; Frisch M; Maurer HP; Melchinger AE
    Theor Appl Genet; 2005 Aug; 111(3):598-608. PubMed ID: 15918007
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [Genetic potentiality of utilizing Yugoslavia maize inbred lines to improve Chinese elite hybrids].
    Li YL; Wang C
    Yi Chuan; 2005 Jul; 27(4):611-6. PubMed ID: 16120588
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Small ad hoc versus large general training populations for genomewide selection in maize biparental crosses.
    Brandariz SP; Bernardo R
    Theor Appl Genet; 2019 Feb; 132(2):347-353. PubMed ID: 30390129
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Heterosis for carotenoid concentration and profile in maize hybrids.
    Burt AJ; Grainger CM; Shelp BJ; Lee EA
    Genome; 2011 Dec; 54(12):993-1004. PubMed ID: 22098475
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Genetic diversity, population structure, and association mapping of agronomic traits in waxy and normal maize inbred lines.
    Sa KJ; Park JY; Choi SH; Kim BW; Park KJ; Lee JK
    Genet Mol Res; 2015 Jul; 14(3):7502-18. PubMed ID: 26214429
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Prediction of hybrid performance in maize with a ridge regression model employed to DNA markers and mRNA transcription profiles.
    Zenke-Philippi C; Thiemann A; Seifert F; Schrag T; Melchinger AE; Scholten S; Frisch M
    BMC Genomics; 2016 Mar; 17():262. PubMed ID: 27025377
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Efficiency gain of marker-assisted backcrossing by sequentially increasing marker densities over generations.
    Prigge V; Melchinger AE; Dhillon BS; Frisch M
    Theor Appl Genet; 2009 Jun; 119(1):23-32. PubMed ID: 19407987
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Selection theory for marker-assisted backcrossing.
    Frisch M; Melchinger AE
    Genetics; 2005 Jun; 170(2):909-17. PubMed ID: 15802512
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cis-transcriptional variation in maize inbred lines B73 and Mo17 leads to additive expression patterns in the F1 hybrid.
    Stupar RM; Springer NM
    Genetics; 2006 Aug; 173(4):2199-210. PubMed ID: 16702414
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.