BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

132 related articles for article (PubMed ID: 16888702)

  • 1. A comparison of non-radioactive methods for assessing viability in ex vivo cultured cancellous bone: technical note.
    Stoddart MJ; Furlong PI; Simpson A; Davies CM; Richards RG
    Eur Cell Mater; 2006 Aug; 12():16-25; discussion 16-25. PubMed ID: 16888702
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Viability assessment of osteocytes using histological lactate dehydrogenase activity staining on human cancellous bone sections.
    Jähn K; Stoddart MJ
    Methods Mol Biol; 2011; 740():141-8. PubMed ID: 21468975
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The determination of bone viability: a histochemical method for identification of lactate dehydrogenase activity in osteocytes in fresh calcified and decalcified sections of human bone.
    Wong SY; Dunstan CR; Evans RA; Hills E
    Pathology; 1982 Oct; 14(4):439-42. PubMed ID: 6760091
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Osteocyte viability and regulation of osteoblast function in a 3D trabecular bone explant under dynamic hydrostatic pressure.
    Takai E; Mauck RL; Hung CT; Guo XE
    J Bone Miner Res; 2004 Sep; 19(9):1403-10. PubMed ID: 15312240
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Comparison of techniques for determination of chondrocyte viability after thermal injury.
    Rauch B; Edwards RB; Lu Y; Hao Z; Muir P; Markel MD
    Am J Vet Res; 2006 Aug; 67(8):1280-5. PubMed ID: 16881837
    [TBL] [Abstract][Full Text] [Related]  

  • 6. TGFbeta3 and loading increases osteocyte survival in human cancellous bone cultured ex vivo.
    Simpson AE; Stoddart MJ; Davies CM; Jähn K; Furlong PI; Gasser JA; Jones DB; Noble BS; Richards RG
    Cell Biochem Funct; 2009 Jan; 27(1):23-9. PubMed ID: 19107876
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mechanically loaded ex vivo bone culture system 'Zetos': systems and culture preparation.
    Davies CM; Jones DB; Stoddart MJ; Koller K; Smith E; Archer CW; Richards RG
    Eur Cell Mater; 2006 Apr; 11():57-75; discussion 75. PubMed ID: 16612792
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Non-destructive monitoring of viability in an ex vivo organ culture model of osteochondral tissue.
    Elson KM; Fox N; Tipper JL; Kirkham J; Hall RM; Fisher J; Ingham E
    Eur Cell Mater; 2015 Jun; 29():356-69; discussion 369. PubMed ID: 26122871
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Techniques for the Study of Apoptosis in Bone.
    Mann V; Noble B
    Methods Mol Biol; 2019; 1914():451-465. PubMed ID: 30729482
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Modifications of the lactate dehydrogenase assay, a histochemical determinant of osteocyte viability--a qualitative study.
    Phillips CA; Hughes DR; Huja SS
    Acta Histochem; 2009; 111(2):166-71. PubMed ID: 18555520
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Techniques for the study of apoptosis in bone.
    Riahi S; Noble B
    Methods Mol Biol; 2012; 816():335-49. PubMed ID: 22130939
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Novel explant model to study mechanotransduction and cell-cell communication.
    Hoffler CE; Hankenson KD; Miller JD; Bilkhu SK; Goldstein SA
    J Orthop Res; 2006 Aug; 24(8):1687-98. PubMed ID: 16788985
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A simple and improved method to determine cell viability in burn-injured tissue.
    Gibson ALF; Shatadal S
    J Surg Res; 2017 Jul; 215():83-87. PubMed ID: 28688666
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Evaluating differential nuclear DNA yield rates and osteocyte numbers among human bone tissue types: A synchrotron radiation micro-CT approach.
    Andronowski JM; Mundorff AZ; Pratt IV; Davoren JM; Cooper DML
    Forensic Sci Int Genet; 2017 May; 28():211-218. PubMed ID: 28315820
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Comparison of cell viability probes compatible with fixation and permeabilization for combined surface and intracellular staining in flow cytometry.
    O'Brien MC; Bolton WE
    Cytometry; 1995 Mar; 19(3):243-55. PubMed ID: 7537649
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Assessment of Cell Viability with Single-, Dual-, and Multi-Staining Methods Using Image Cytometry.
    Chan LL; McCulley KJ; Kessel SL
    Methods Mol Biol; 2017; 1601():27-41. PubMed ID: 28470515
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Differentiation of cancellous bone and medullary bone in laying hens: a novel technique for image analysis.
    Lynch M; Maxwell MH
    Biotech Histochem; 1991; 66(6):303-6. PubMed ID: 1725855
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Flow perfusion maintains ex vivo bone viability: a novel model for bone biology research.
    Davidson EH; Reformat DD; Allori A; Canizares O; Janelle Wagner I; Saadeh PB; Warren SM
    J Tissue Eng Regen Med; 2012 Nov; 6(10):769-76. PubMed ID: 22052846
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Establishing a 3D ex vivo culture system for investigations of bone metabolism and biomaterial interactions.
    Richards RG; Simpson AE; Jaehn K; Furlong PI; Stoddart MJ
    ALTEX; 2007; 24 Spec No():56-9. PubMed ID: 19835059
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The effect of age on bone composition and viability in the femoral head.
    Wong SY; Kariks J; Evans RA; Dunstan CR; Hills E
    J Bone Joint Surg Am; 1985 Feb; 67(2):274-83. PubMed ID: 3968120
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.