BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

78 related articles for article (PubMed ID: 16888824)

  • 1. The search for single DNA damage among millions of base pairs: DNA glycosylases trapped at work.
    Wagenknecht HA
    Angew Chem Int Ed Engl; 2006 Aug; 45(34):5583-5. PubMed ID: 16888824
    [No Abstract]   [Full Text] [Related]  

  • 2. [The role of glycosylases of the base excision DNA repair in pathogenesis of hereditary and infectious human diseases].
    Sidorenko VS; Zharkov DO
    Mol Biol (Mosk); 2008; 42(5):891-903. PubMed ID: 18988537
    [TBL] [Abstract][Full Text] [Related]  

  • 3. [Biological consequences and base excision repair mechanisms of oxidative base damage in DNA].
    Zhang QM; Nakamura N; Yonekura S; Yonei S; Zhang QM; Nakamura N; Yonekura S; Yonei S
    Tanpakushitsu Kakusan Koso; 2005 Apr; 50(4):322-9. PubMed ID: 15828278
    [No Abstract]   [Full Text] [Related]  

  • 4. [Base excision repair of DNA: glycosylases].
    Korolev BG
    Genetika; 2005 Jun; 41(6):725-35. PubMed ID: 16080596
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Role of MUTYH and MSH2 in the control of oxidative DNA damage, genetic instability, and tumorigenesis.
    Russo MT; De Luca G; Casorelli I; Degan P; Molatore S; Barone F; Mazzei F; Pannellini T; Musiani P; Bignami M
    Cancer Res; 2009 May; 69(10):4372-9. PubMed ID: 19435918
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mucking with metabolism.
    Beckman M
    Sci Aging Knowledge Environ; 2006 Feb; 2006(5):nf6. PubMed ID: 16469729
    [No Abstract]   [Full Text] [Related]  

  • 7. Structure of a DNA glycosylase searching for lesions.
    Banerjee A; Santos WL; Verdine GL
    Science; 2006 Feb; 311(5764):1153-7. PubMed ID: 16497933
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Oxidative DNA damage defense systems in avoidance of stationary-phase mutagenesis in Pseudomonas putida.
    Saumaa S; Tover A; Tark M; Tegova R; Kivisaar M
    J Bacteriol; 2007 Aug; 189(15):5504-14. PubMed ID: 17545288
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Significance of amino acid substitution variants of DNA repair genes in radiosusceptibility of cervical cancer patients; a pilot study.
    Farkasova T; Gurska S; Witkovsky V; Gabelova A
    Neoplasma; 2008; 55(4):330-7. PubMed ID: 18505345
    [TBL] [Abstract][Full Text] [Related]  

  • 10. DNA damage repair and genetic polymorphisms: assessment of individual sensitivity and repair capacity.
    Cornetta T; Festa F; Testa A; Cozzi R
    Int J Radiat Oncol Biol Phys; 2006 Oct; 66(2):537-45. PubMed ID: 16965996
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A Ser326Cys polymorphism in the DNA repair gene hOGG1 is not associated with sporadic Alzheimer's disease.
    Coppedè F; Mancuso M; Lo Gerfo A; Manca ML; Petrozzi L; Migliore L; Siciliano G; Murri L
    Neurosci Lett; 2007 Mar; 414(3):282-5. PubMed ID: 17240059
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Repair mechanism of DNA-protein cross-link damage in Escherichia coli.
    Nakano T; Morishita S; Terato H; Pack SP; Makino K; Ide H
    Nucleic Acids Symp Ser (Oxf); 2007; (51):213-4. PubMed ID: 18029662
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Slow base excision by human alkyladenine DNA glycosylase limits the rate of formation of AP sites and AP endonuclease 1 does not stimulate base excision.
    Maher RL; Vallur AC; Feller JA; Bloom LB
    DNA Repair (Amst); 2007 Jan; 6(1):71-81. PubMed ID: 17018265
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Crosstalk of DNA glycosylases with pathways other than base excision repair.
    Kovtun IV; McMurray CT
    DNA Repair (Amst); 2007 Apr; 6(4):517-29. PubMed ID: 17129768
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The tumor suppressor homolog in fission yeast, myh1(+), displays a strong interaction with the checkpoint gene rad1(+).
    Jansson K; Warringer J; Farewell A; Park HO; Hoe KL; Kim DU; Hayles J; Sunnerhagen P
    Mutat Res; 2008 Sep; 644(1-2):48-55. PubMed ID: 18675827
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The basal levels of 8-oxoG and other oxidative modifications in intact mitochondrial DNA are low even in repair-deficient (Ogg1(-/-)/Csb(-/-)) mice.
    Trapp C; McCullough AK; Epe B
    Mutat Res; 2007 Dec; 625(1-2):155-63. PubMed ID: 17675188
    [TBL] [Abstract][Full Text] [Related]  

  • 17. XRCC1 interactions with base excision repair DNA intermediates.
    Nazarkina ZK; Khodyreva SN; Marsin S; Lavrik OI; Radicella JP
    DNA Repair (Amst); 2007 Feb; 6(2):254-64. PubMed ID: 17118717
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Oxidative DNA glycosylases: recipes from cloning to characterization.
    Bandaru V; Blaisdell JO; Wallace SS
    Methods Enzymol; 2006; 408():15-33. PubMed ID: 16793360
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The substrate specificity of MutY for hyperoxidized guanine lesions in vivo.
    Delaney S; Neeley WL; Delaney JC; Essigmann JM
    Biochemistry; 2007 Feb; 46(5):1448-55. PubMed ID: 17260974
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Interplay between DNA N-glycosylases/AP lyases at multiply damaged sites and biological consequences.
    Eot-Houllier G; Gonera M; Gasparutto D; Giustranti C; Sage E
    Nucleic Acids Res; 2007; 35(10):3355-66. PubMed ID: 17468500
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.