These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

123 related articles for article (PubMed ID: 16889238)

  • 1. Calcium effect on enhanced biological phosphorus removal.
    Barat R; Montoya T; Borras L; Seco A; Ferrer J
    Water Sci Technol; 2006; 53(12):29-37. PubMed ID: 16889238
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Calcium effect on the metabolic pathway of phosphorus accumulating organisms in enhanced biological phosphorus removal systems.
    Zhang HL; Sheng GP; Fang W; Wang YP; Fang CY; Shao LM; Yu HQ
    Water Res; 2015 Nov; 84():171-80. PubMed ID: 26233656
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Enhanced biological phosphorus removal from wastewater by biomass with different phosphorus contents, Part I: Experimental results and comparison with metabolic models.
    Schuler AJ; Jenkins D
    Water Environ Res; 2003; 75(6):485-98. PubMed ID: 14704008
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Comparison of nutrient removal efficiency between pre- and post-denitrification wastewater treatments.
    Hamada K; Kuba T; Torrico V; Okazaki M; Kusuda T
    Water Sci Technol; 2006; 53(9):169-75. PubMed ID: 16841740
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The occurrence of enhanced biological phosphorus removal in a 200,000 m
    Cao Y; Kwok BH; van Loosdrecht MC; Daigger GT; Png HY; Long WY; Chye CS; Ghani YA
    Water Sci Technol; 2017 Feb; 75(3-4):741-751. PubMed ID: 28192367
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Aerobic phosphorus release linked to acetate uptake in bio-P sludge: process modeling using oxygen uptake rate.
    Guisasola A; Pijuan M; Baeza JA; Carrera J; Casas C; Lafuente J
    Biotechnol Bioeng; 2004 Mar; 85(7):722-33. PubMed ID: 14991650
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Methanol-driven enhanced biological phosphorus removal with a syntrophic consortium.
    Tayà C; Guerrero J; Vanneste G; Guisasola A; Baeza JA
    Biotechnol Bioeng; 2013 Feb; 110(2):391-400. PubMed ID: 22886528
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Biomass granulation in an aerobic:anaerobic-enhanced biological phosphorus removal process in a sequencing batch reactor with varying pH.
    Ahn J; McIlroy S; Schroeder S; Seviour R
    J Ind Microbiol Biotechnol; 2009 Jul; 36(7):885-93. PubMed ID: 19350296
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Enhanced biological phosphorus removal from wastewater by biomass with different phosphorus contents, Part II: Anaerobic adenosine triphosphate utilization and acetate uptake rates.
    Schuler AJ; Jenkins D
    Water Environ Res; 2003; 75(6):499-511. PubMed ID: 14704009
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The long-term effect of initial pH control on the enrichment culture of phosphorus- and glycogen-accumulating organisms with a mixture of propionic and acetic acids as carbon sources.
    Zhang C; Chen Y; Liu Y
    Chemosphere; 2007 Nov; 69(11):1713-21. PubMed ID: 17662338
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Phosphorus removal and N₂O production in anaerobic/anoxic denitrifying phosphorus removal process: long-term impact of influent phosphorus concentration.
    Wang Z; Meng Y; Fan T; Du Y; Tang J; Fan S
    Bioresour Technol; 2015 Mar; 179():585-594. PubMed ID: 25541320
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Modelling the metabolic shift of polyphosphate-accumulating organisms.
    Acevedo B; Borrás L; Oehmen A; Barat R
    Water Res; 2014 Nov; 65():235-44. PubMed ID: 25123437
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effect of pH on biological phosphorus uptake.
    Serralta J; Ferrer J; Borrás L; Seco A
    Biotechnol Bioeng; 2006 Dec; 95(5):875-82. PubMed ID: 16958137
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Enhanced biological phosphorus removal from wastewater by biomass with different phosphorus contents, Part III: Anaerobic sources of reducing equivalents.
    Schuler AJ; Jenkins D
    Water Environ Res; 2003; 75(6):512-22. PubMed ID: 14704010
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Model-based analysis of anaerobic acetate uptake by a mixed culture of polyphosphate-accumulating and glycogen-accumulating organisms.
    Zeng RJ; Yuan Z; Keller J
    Biotechnol Bioeng; 2003 Aug; 83(3):293-302. PubMed ID: 12783485
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Accumulibacter clades Type I and II performing kinetically different glycogen-accumulating organisms metabolisms for anaerobic substrate uptake.
    Welles L; Tian WD; Saad S; Abbas B; Lopez-Vazquez CM; Hooijmans CM; van Loosdrecht MC; Brdjanovic D
    Water Res; 2015 Oct; 83():354-66. PubMed ID: 26189167
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Interactions between calcium precipitation and the polyphosphate-accumulating bacteria metabolism.
    Barat R; Montoya T; Borrás L; Ferrer J; Seco A
    Water Res; 2008 Jul; 42(13):3415-24. PubMed ID: 18538819
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Potential of hydrolysis of particulate COD in extended anaerobic conditions to enhance biological phosphorous removal.
    Jabari P; Yuan Q; Oleszkiewicz JA
    Biotechnol Bioeng; 2016 Nov; 113(11):2377-85. PubMed ID: 27144731
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [Effect of the Influent C/P Ratio on the Nutrient Removal Characteristics of the SNEDPR System].
    Zhen JY; Yu DS; Wang XX; Chen GH; Du YQ; Yuan MF; Du SM
    Huan Jing Ke Xue; 2019 Jan; 40(1):343-351. PubMed ID: 30628292
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Calcium phosphate precipitation in a SBR operated for EBPR: interactions with the biological process.
    Barat R; Montoya T; Borras L; Ferrer J; Seco A
    Water Sci Technol; 2008; 58(2):427-33. PubMed ID: 18701796
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.