BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

126 related articles for article (PubMed ID: 16889339)

  • 1. Oscillatory interaction between bubbles and confining microvessels and its implications on clinical vascular injuries of shock-wave lithotripsy.
    Qin S; Hu Y; Jiang Q
    IEEE Trans Ultrason Ferroelectr Freq Control; 2006 Jul; 53(7):1322-9. PubMed ID: 16889339
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Dynamics of bubble oscillation in constrained media and mechanisms of vessel rupture in SWL.
    Zhong P; Zhou Y; Zhu S
    Ultrasound Med Biol; 2001 Jan; 27(1):119-34. PubMed ID: 11295278
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A three-dimensional model of an ultrasound contrast agent gas bubble and its mechanical effects on microvessels.
    Hosseinkhah N; Hynynen K
    Phys Med Biol; 2012 Feb; 57(3):785-808. PubMed ID: 22252221
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The natural frequency of nonlinear oscillation of ultrasound contrast agents in microvessels.
    Qin S; Ferrara KW
    Ultrasound Med Biol; 2007 Jul; 33(7):1140-8. PubMed ID: 17478030
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Microbubble oscillating in a microvessel filled with viscous fluid: A finite element modeling study.
    Chen C; Gu Y; Tu J; Guo X; Zhang D
    Ultrasonics; 2016 Mar; 66():54-64. PubMed ID: 26651263
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Acoustic response of compliable microvessels containing ultrasound contrast agents.
    Qin S; Ferrara KW
    Phys Med Biol; 2006 Oct; 51(20):5065-88. PubMed ID: 17019026
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Suppression of shocked-bubble expansion due to tissue confinement with application to shock-wave lithotripsy.
    Freund JB
    J Acoust Soc Am; 2008 May; 123(5):2867-74. PubMed ID: 18529202
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Response of constrained and unconstrained bubbles to lithotripter shock wave pulses.
    Ding Z; Gracewski SM
    J Acoust Soc Am; 1994 Dec; 96(6):3636-44. PubMed ID: 7814766
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Shock wave-bubble interaction near soft and rigid boundaries during lithotripsy: numerical analysis by the improved ghost fluid method.
    Kobayashi K; Kodama T; Takahira H
    Phys Med Biol; 2011 Oct; 56(19):6421-40. PubMed ID: 21918295
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mechanisms of microbubble-vessel interactions and induced stresses: a numerical study.
    Hosseinkhah N; Chen H; Matula TJ; Burns PN; Hynynen K
    J Acoust Soc Am; 2013 Sep; 134(3):1875-85. PubMed ID: 23967921
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Jet formation and shock wave emission during collapse of ultrasound-induced cavitation bubbles and their role in the therapeutic applications of high-intensity focused ultrasound.
    Brujan EA; Ikeda T; Matsumoto Y
    Phys Med Biol; 2005 Oct; 50(20):4797-809. PubMed ID: 16204873
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Forced vibrations of a bubble in a liquid-filled elastic vessel.
    Martynov S; Kostson E; Saffari N; Stride E
    J Acoust Soc Am; 2011 Nov; 130(5):2700-8. PubMed ID: 22087898
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Shock-induced collapse of a gas bubble in shockwave lithotripsy.
    Johnsen E; Colonius T
    J Acoust Soc Am; 2008 Oct; 124(4):2011-20. PubMed ID: 19062841
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Lithotripter shock wave interaction with a bubble near various biomaterials.
    Ohl SW; Klaseboer E; Szeri AJ; Khoo BC
    Phys Med Biol; 2016 Oct; 61(19):7031-7053. PubMed ID: 27649337
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The natural frequencies of microbubble oscillation in elastic vessels.
    Martynov S; Stride E; Saffari N
    J Acoust Soc Am; 2009 Dec; 126(6):2963-72. PubMed ID: 20000909
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Nonlinear dynamic behavior of microscopic bubbles near a rigid wall.
    Suslov SA; Ooi A; Manasseh R
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Jun; 85(6 Pt 2):066309. PubMed ID: 23005208
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Microbubbles and blood-brain barrier opening: a numerical study on acoustic emissions and wall stress predictions.
    Hosseinkhah N; Goertz DE; Hynynen K
    IEEE Trans Biomed Eng; 2015 May; 62(5):1293-304. PubMed ID: 25546853
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Numerical analysis of the biomechanical effects on micro-vessels by ultrasound-driven cavitation.
    Liu W; Hu J; Liu Y; Lei W; Chen X
    Acta Bioeng Biomech; 2021; 23(1):95-105. PubMed ID: 34846033
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Reduction of tissue injury in shock-wave lithotripsy by using an acoustic diode.
    Zhu S; Dreyer T; Liebler M; Riedlinger R; Preminger GM; Zhong P
    Ultrasound Med Biol; 2004 May; 30(5):675-82. PubMed ID: 15183234
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Shock-induced collapse of a bubble inside a deformable vessel.
    Coralic V; Colonius T
    Eur J Mech B Fluids; 2013 Jul; 40():64-74. PubMed ID: 24015027
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.