These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

118 related articles for article (PubMed ID: 16889339)

  • 61. Numerical simulation of single bubble dynamics under acoustic standing waves.
    Qiu S; Ma X; Huang B; Li D; Wang G; Zhang M
    Ultrason Sonochem; 2018 Dec; 49():196-205. PubMed ID: 30174251
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Kidney damage in extracorporeal shock wave lithotripsy: a numerical approach for different shock profiles.
    Weinberg K; Ortiz M
    Biomech Model Mechanobiol; 2009 Aug; 8(4):285-99. PubMed ID: 18807077
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Assessment of wall elasticity variations on intraluminal haemodynamics in descending aortic dissections using a lumped-parameter model.
    Rudenick PA; Bijnens BH; Segers P; GarcĂ­a-Dorado D; Evangelista A
    PLoS One; 2015; 10(4):e0124011. PubMed ID: 25881158
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Jet and Shock Wave from Collapse of Two Cavitation Bubbles.
    Luo J; Niu Z
    Sci Rep; 2019 Feb; 9(1):1352. PubMed ID: 30718594
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Ultrasound-Induced Bubble Clusters in Tissue-Mimicking Agar Phantoms.
    Movahed P; Kreider W; Maxwell AD; Dunmire B; Freund JB
    Ultrasound Med Biol; 2017 Oct; 43(10):2318-2328. PubMed ID: 28739379
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Dependence of the characteristics of bubbles on types of sonochemical reactors.
    Yasui K; Tuziuti T; Iida Y
    Ultrason Sonochem; 2005 Jan; 12(1-2):43-51. PubMed ID: 15474951
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Suppression of cavitation inception by gas bubble injection: a numerical study focusing on bubble-bubble interaction.
    Ida M; Naoe T; Futakawa M
    Phys Rev E Stat Nonlin Soft Matter Phys; 2007 Oct; 76(4 Pt 2):046309. PubMed ID: 17995108
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Impact of shock wave pattern and cavitation bubble size on tissue damage during ureteroscopic electrohydraulic lithotripsy.
    Vorreuther R; Corleis R; Klotz T; Bernards P; Engelmann U
    J Urol; 1995 Mar; 153(3 Pt 1):849-53. PubMed ID: 7861549
    [TBL] [Abstract][Full Text] [Related]  

  • 69. The effect of reflector geometry on the acoustic field and bubble dynamics produced by an electrohydraulic shock wave lithotripter.
    Zhou Y; Zhong P
    J Acoust Soc Am; 2006 Jun; 119(6):3625-36. PubMed ID: 16838506
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Numerical study of acoustically driven bubble cloud dynamics near a rigid wall.
    Ma J; Hsiao CT; Chahine GL
    Ultrason Sonochem; 2018 Jan; 40(Pt A):944-954. PubMed ID: 28946507
    [TBL] [Abstract][Full Text] [Related]  

  • 71. A theoretical study of cavitation generated by an extracorporeal shock wave lithotripter.
    Church CC
    J Acoust Soc Am; 1989 Jul; 86(1):215-27. PubMed ID: 2754108
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Interaction of a spark-generated bubble with a rubber beam: numerical and experimental study.
    Gong SW; Goh BH; Ohl SW; Khoo BC
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Aug; 86(2 Pt 2):026307. PubMed ID: 23005854
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Numerical simulation of bubble dynamics in a Phan-Thien-Tanner liquid: non-linear shape and size oscillatory response under periodic pressure.
    Foteinopoulou K; Laso M
    Ultrasonics; 2010 Aug; 50(8):758-76. PubMed ID: 20385399
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Heterogeneous mechanics of the mouse pulmonary arterial network.
    Lee P; Carlson BE; Chesler N; Olufsen MS; Qureshi MU; Smith NP; Sochi T; Beard DA
    Biomech Model Mechanobiol; 2016 Oct; 15(5):1245-61. PubMed ID: 26792789
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Assessment of patient effective radiation dose and associated radiogenic risk from extracorporeal shock-wave lithotripsy.
    Perisinakis K; Damilakis J; Anezinis P; Tzagaraki I; Varveris H; Cranidis A; Gourtsoyiannis N
    Health Phys; 2002 Dec; 83(6):847-53. PubMed ID: 12467292
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Early effects of ionizing radiation on the microvascular networks in normal tissue.
    Roth NM; Sontag MR; Kiani MF
    Radiat Res; 1999 Mar; 151(3):270-7. PubMed ID: 10073664
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Towards classification of the bifurcation structure of a spherical cavitation bubble.
    Behnia S; Sojahrood AJ; Soltanpoor W; Sarkhosh L
    Ultrasonics; 2009 Dec; 49(8):605-10. PubMed ID: 19545884
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Strategies for improved shock wave lithotripsy.
    McAteer JA; Bailey MR; Williams JC; Cleveland RO; Evan AP
    Minerva Urol Nefrol; 2005 Dec; 57(4):271-87. PubMed ID: 16247349
    [TBL] [Abstract][Full Text] [Related]  

  • 79. A cumulative shear mechanism for tissue damage initiation in shock-wave lithotripsy.
    Freund JB; Colonius T; Evan AP
    Ultrasound Med Biol; 2007 Sep; 33(9):1495-503. PubMed ID: 17507147
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Effects of stent stiffness on local haemodynamics with particular reference to wave reflections.
    Alderson H; Zamir M
    J Biomech; 2004 Mar; 37(3):339-48. PubMed ID: 14757453
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.