These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

1107 related articles for article (PubMed ID: 16889378)

  • 1. Energy and emission benefits of alternative transportation liquid fuels derived from switchgrass: a fuel life cycle assessment.
    Wu M; Wu Y; Wang M
    Biotechnol Prog; 2006; 22(4):1012-24. PubMed ID: 16889378
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A life-cycle comparison of alternative automobile fuels.
    MacLean HL; Lave LB; Lankey R; Joshi S
    J Air Waste Manag Assoc; 2000 Oct; 50(10):1769-79. PubMed ID: 11288305
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Assessment of potential life-cycle energy and greenhouse gas emission effects from using corn-based butanol as a transportation fuel.
    Wu M; Wang M; Liu J; Huo H
    Biotechnol Prog; 2008; 24(6):1204-14. PubMed ID: 19194933
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Assessment of fuel-cycle energy use and greenhouse gas emissions for Fischer-Tropsch diesel from coal and cellulosic biomass.
    Xie X; Wang M; Han J
    Environ Sci Technol; 2011 Apr; 45(7):3047-53. PubMed ID: 21370852
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Regional on-road vehicle running emissions modeling and evaluation for conventional and alternative vehicle technologies.
    Frey HC; Zhai H; Rouphail NM
    Environ Sci Technol; 2009 Nov; 43(21):8449-55. PubMed ID: 19924983
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Life cycle energy and greenhouse gas emissions for an ethanol production process based on blue-green algae.
    Luo D; Hu Z; Choi DG; Thomas VM; Realff MJ; Chance RR
    Environ Sci Technol; 2010 Nov; 44(22):8670-7. PubMed ID: 20968295
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [Life cycle assessment of energy consumption and greenhouse gas emissions of cellulosic ethanol from corn stover].
    Tian W; Liao C; Li L; Zhao D
    Sheng Wu Gong Cheng Xue Bao; 2011 Mar; 27(3):516-25. PubMed ID: 21650036
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Trends of greenhouse gas emissions from the road transport sector in India.
    Singh A; Gangopadhyay S; Nanda PK; Bhattacharya S; Sharma C; Bhan C
    Sci Total Environ; 2008 Feb; 390(1):124-31. PubMed ID: 17977579
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Emission reduction potential of using gas-to-liquid and dimethyl ether fuels on a turbocharged diesel engine.
    Xinling L; Zhen H
    Sci Total Environ; 2009 Mar; 407(7):2234-44. PubMed ID: 19106002
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Characterizing model uncertainties in the life cycle of lignocellulose-based ethanol fuels.
    Spatari S; MacLean HL
    Environ Sci Technol; 2010 Nov; 44(22):8773-80. PubMed ID: 20979408
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Comparison of flexible fuel vehicle and life-cycle fuel consumption and emissions of selected pollutants and greenhouse gases for ethanol 85 versus gasoline.
    Zhai H; Frey HC; Rouphail NM; Gonçalves GA; Farias TL
    J Air Waste Manag Assoc; 2009 Aug; 59(8):912-24. PubMed ID: 19728485
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Biofuels, vehicle emissions, and urban air quality.
    Wallington TJ; Anderson JE; Kurtz EM; Tennison PJ
    Faraday Discuss; 2016 Jul; 189():121-36. PubMed ID: 27112132
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A spatially and temporally explicit life cycle inventory of air pollutants from gasoline and ethanol in the United States.
    Tessum CW; Marshall JD; Hill JD
    Environ Sci Technol; 2012 Oct; 46(20):11408-17. PubMed ID: 22906224
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Toxic emissions from mobile sources: a total fuel-cycle analysis for conventional and alternative fuel vehicles.
    Winebrake JJ; Wang MQ; He D
    J Air Waste Manag Assoc; 2001 Jul; 51(7):1073-86. PubMed ID: 15658225
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Characterization of real-world activity, fuel use, and emissions for selected motor graders fueled with petroleum diesel and B20 biodiesel.
    Frey HC; Kim K; Pang SH; Rasdorf WJ; Lewis P
    J Air Waste Manag Assoc; 2008 Oct; 58(10):1274-87. PubMed ID: 18939774
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Determining air quality and greenhouse gas impacts of hydrogen infrastructure and fuel cell vehicles.
    Stephens-Romero S; Carreras-Sospedra M; Brouwer J; Dabdub D; Samuelsen S
    Environ Sci Technol; 2009 Dec; 43(23):9022-9. PubMed ID: 19943683
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The potential of bio-methane as bio-fuel/bio-energy for reducing greenhouse gas emissions: a qualitative assessment for Europe in a life cycle perspective.
    Tilche A; Galatola M
    Water Sci Technol; 2008; 57(11):1683-92. PubMed ID: 18547917
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Environmental, economic, and energetic costs and benefits of biodiesel and ethanol biofuels.
    Hill J; Nelson E; Tilman D; Polasky S; Tiffany D
    Proc Natl Acad Sci U S A; 2006 Jul; 103(30):11206-10. PubMed ID: 16837571
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Environmental aspects of eucalyptus based ethanol production and use.
    González-García S; Moreira MT; Feijoo G
    Sci Total Environ; 2012 Nov; 438():1-8. PubMed ID: 22960456
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A tank-to-wheel analysis tool for energy and emissions studies in road vehicles.
    Silva CM; Gonçalves GA; Farias TL; Mendes-Lopes JM
    Sci Total Environ; 2006 Aug; 367(1):441-7. PubMed ID: 16546238
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 56.