BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

174 related articles for article (PubMed ID: 16889422)

  • 21. Reconstruction of a bacterial isoprenoid biosynthetic pathway in Saccharomyces cerevisiae.
    Maury J; Asadollahi MA; Møller K; Schalk M; Clark A; Formenti LR; Nielsen J
    FEBS Lett; 2008 Dec; 582(29):4032-8. PubMed ID: 18996117
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Overrepresentation of interactions between homologous proteins in interactomes.
    Orlowski J; Kaczanowski S; Zielenkiewicz P
    FEBS Lett; 2007 Jan; 581(1):52-6. PubMed ID: 17174313
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Modelling and mutational evidence identify the substrate binding site and functional elements in APC amino acid transporters.
    Vangelatos I; Vlachakis D; Sophianopoulou V; Diallinas G
    Mol Membr Biol; 2009 Aug; 26(5):356-70. PubMed ID: 19670073
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Structural characterization of the human proteome.
    Müller A; MacCallum RM; Sternberg MJ
    Genome Res; 2002 Nov; 12(11):1625-41. PubMed ID: 12421749
    [TBL] [Abstract][Full Text] [Related]  

  • 25. The plasticity of global proteome and genome expression analyzed in closely related W3110 and MG1655 strains of a well-studied model organism, Escherichia coli-K12.
    Vijayendran C; Polen T; Wendisch VF; Friehs K; Niehaus K; Flaschel E
    J Biotechnol; 2007 Mar; 128(4):747-61. PubMed ID: 17331609
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Computational analysis of the S. cerevisiae proteome reveals the function and cellular localization of the least and most amyloidogenic proteins.
    Tartaglia GG; Caflisch A
    Proteins; 2007 Jul; 68(1):273-8. PubMed ID: 17407164
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Choice of an adequate promoter for efficient complementation in Saccharomyces cerevisiae: a case study.
    Lo Presti L; Cerutti L; Monod M; Hauser PM
    Res Microbiol; 2009; 160(6):380-8. PubMed ID: 19589384
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Multi-modality of pI distribution in whole proteome.
    Wu S; Wan P; Li J; Li D; Zhu Y; He F
    Proteomics; 2006 Jan; 6(2):449-55. PubMed ID: 16317776
    [TBL] [Abstract][Full Text] [Related]  

  • 29. The structure and function of Saccharomyces cerevisiae proteinase A.
    Parr CL; Keates RA; Bryksa BC; Ogawa M; Yada RY
    Yeast; 2007 Jun; 24(6):467-80. PubMed ID: 17447722
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Multiple stressor-induced proteome responses of Escherichia coli BL21(DE3).
    Han KY; Park JS; Seo HS; Ahn KY; Lee J
    J Proteome Res; 2008 May; 7(5):1891-903. PubMed ID: 18363324
    [TBL] [Abstract][Full Text] [Related]  

  • 31. The applications of systematic in-frame, single-gene knockout mutant collection of Escherichia coli K-12.
    Baba T; Huan HC; Datsenko K; Wanner BL; Mori H
    Methods Mol Biol; 2008; 416():183-94. PubMed ID: 18392968
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Crystal structure, biochemical and genetic characterization of yeast and E. cuniculi TAF(II)5 N-terminal domain: implications for TFIID assembly.
    Romier C; James N; Birck C; Cavarelli J; Vivarès C; Collart MA; Moras D
    J Mol Biol; 2007 May; 368(5):1292-306. PubMed ID: 17397863
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Systems biology. Life's complexity pyramid.
    Oltvai ZN; Barabási AL
    Science; 2002 Oct; 298(5594):763-4. PubMed ID: 12399572
    [No Abstract]   [Full Text] [Related]  

  • 34. Unique identification of proteins from small genome organisms: theoretical feasibility of high throughput proteome analysis.
    Cavalcoli JD; VanBogelen RA; Andrews PC; Moldover B
    Electrophoresis; 1997 Dec; 18(15):2703-8. PubMed ID: 9504801
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Structural correlates of the temperature sensitive phenotype derived from saturation mutagenesis studies of CcdB.
    Bajaj K; Dewan PC; Chakrabarti P; Goswami D; Barua B; Baliga C; Varadarajan R
    Biochemistry; 2008 Dec; 47(49):12964-73. PubMed ID: 19006334
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Adaptation of proteins to different environments: a comparison of proteome structural properties in Bacillus subtilis and Escherichia coli.
    Marashi SA; Behrouzi R; Pezeshk H
    J Theor Biol; 2007 Jan; 244(1):127-32. PubMed ID: 16945389
    [TBL] [Abstract][Full Text] [Related]  

  • 37. How expression level influences the disorderness of proteins.
    Singh GP; Dash D
    Biochem Biophys Res Commun; 2008 Jul; 371(3):401-4. PubMed ID: 18439906
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Intrinsically disordered regions of human plasma membrane proteins preferentially occur in the cytoplasmic segment.
    Minezaki Y; Homma K; Nishikawa K
    J Mol Biol; 2007 May; 368(3):902-13. PubMed ID: 17368479
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Cellular crowding imposes global constraints on the chemistry and evolution of proteomes.
    Levy ED; De S; Teichmann SA
    Proc Natl Acad Sci U S A; 2012 Dec; 109(50):20461-6. PubMed ID: 23184996
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Reinvestigating the codon and amino acid usage of S. cerevisiae genome: a new insight from protein secondary structure analysis.
    Kahali B; Basak S; Ghosh TC
    Biochem Biophys Res Commun; 2007 Mar; 354(3):693-9. PubMed ID: 17258174
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.