These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

190 related articles for article (PubMed ID: 16889512)

  • 21. Using a freeze substitution fixation technique and histological crimp analysis for characterizing regions of strain in ligaments loaded in situ.
    Boorman RS; Norman T; Matsen FA; Clark JM
    J Orthop Res; 2006 Apr; 24(4):793-9. PubMed ID: 16514649
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Collagen fibrils in functionally distinct tendons have differing structural responses to tendon rupture and fatigue loading.
    Herod TW; Chambers NC; Veres SP
    Acta Biomater; 2016 Sep; 42():296-307. PubMed ID: 27321189
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Comparative ultrastructural analysis of different regions of two digital flexor tendons of pigs.
    Feitosa VL; Reis FP; Esquisatto MA; Joazeiro PP; Vidal BC; Pimentel ER
    Micron; 2006; 37(6):518-25. PubMed ID: 16546397
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Collagen fibrillogenesis in situ: fibril segments become long fibrils as the developing tendon matures.
    Birk DE; Zycband EI; Woodruff S; Winkelmann DA; Trelstad RL
    Dev Dyn; 1997 Mar; 208(3):291-8. PubMed ID: 9056634
    [TBL] [Abstract][Full Text] [Related]  

  • 25. An age-related study of morphology and cross-link composition of collagen fibrils in the digital flexor tendons of young thoroughbred horses.
    Patterson-Kane JC; Parry DA; Birch HL; Goodship AE; Firth EC
    Connect Tissue Res; 1997; 36(3):253-60. PubMed ID: 9512893
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Evaluating changes in tendon crimp with fatigue loading as an ex vivo structural assessment of tendon damage.
    Freedman BR; Zuskov A; Sarver JJ; Buckley MR; Soslowsky LJ
    J Orthop Res; 2015 Jun; 33(6):904-10. PubMed ID: 25773654
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Effect of age on collagen fibril diameter in rabbit patellar tendon repair.
    Sklenka AM; Levy MS; Boivin GP
    Comp Med; 2006 Feb; 56(1):8-11. PubMed ID: 16521853
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Ultrastructural features of adult human tendon.
    Dyer RF; Enna CD
    Cell Tissue Res; 1976 May; 168(2):247-59. PubMed ID: 1268937
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Equivalent stiffness after glycosaminoglycan depletion in tendon--an ultra-structural finite element model and corresponding experiments.
    Fessel G; Snedeker JG
    J Theor Biol; 2011 Jan; 268(1):77-83. PubMed ID: 20950629
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Response of a collagenase-induced tendon injury to treatment with a polysulphated glycosaminoglycan (Adequan).
    Oryan A; Goodship AE; Silver IA
    Connect Tissue Res; 2008; 49(5):351-60. PubMed ID: 18991088
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Observations of multiscale, stress-induced changes of collagen orientation in tendon by polarized Raman spectroscopy.
    Masic A; Bertinetti L; Schuetz R; Galvis L; Timofeeva N; Dunlop JW; Seto J; Hartmann MA; Fratzl P
    Biomacromolecules; 2011 Nov; 12(11):3989-96. PubMed ID: 21954830
    [TBL] [Abstract][Full Text] [Related]  

  • 32. The effects of prestrain and collagen fibril alignment on in vitro mineralization of self-assembled collagen fibers.
    Freeman JW; Silver FH
    Connect Tissue Res; 2005; 46(2):107-15. PubMed ID: 16019421
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Localization of collagen types I, III and V during tendon development. Changes in collagen types I and III are correlated with changes in fibril diameter.
    Birk DE; Mayne R
    Eur J Cell Biol; 1997 Apr; 72(4):352-61. PubMed ID: 9127735
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Tenocyte contraction induces crimp formation in tendon-like tissue.
    Herchenhan A; Kalson NS; Holmes DF; Hill P; Kadler KE; Margetts L
    Biomech Model Mechanobiol; 2012 Mar; 11(3-4):449-59. PubMed ID: 21735243
    [TBL] [Abstract][Full Text] [Related]  

  • 35. The relation between collagen fibril kinematics and mechanical properties in the mitral valve anterior leaflet.
    Liao J; Yang L; Grashow J; Sacks MS
    J Biomech Eng; 2007 Feb; 129(1):78-87. PubMed ID: 17227101
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Quantitative histology and ultrastructure fail to explain weakness of immobilized rabbit Achilles' tendons.
    Zhou J; Koike Y; Uhthoff HK; Trudel G
    Arch Phys Med Rehabil; 2007 Sep; 88(9):1177-84. PubMed ID: 17826465
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Stress shielding of patellar tendon: effect on small-diameter collagen fibrils in a rabbit model.
    Majima T; Yasuda K; Tsuchida T; Tanaka K; Miyakawa K; Minami A; Hayashi K
    J Orthop Sci; 2003; 8(6):836-41. PubMed ID: 14648274
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Mineral anisotropy in mineralized tissues is similar among species and mineral growth occurs independently of collagen orientation in rats: results from acoustic velocity measurements.
    Takano Y; Turner CH; Burr DB
    J Bone Miner Res; 1996 Sep; 11(9):1292-301. PubMed ID: 8864904
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Comparative analysis of the microstructure of the hamstring tendons: an electron microscopic, histologic, and morphologic study.
    Hadjicostas PT; Soucacos PN; Koleganova N; Piecha G; Krohmer G; Berger I
    J Surg Orthop Adv; 2008; 17(3):153-8. PubMed ID: 18851799
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Repair of tendons treated with peracetic acid-ethanol and gamma irradiation by EDC combined with NHS: a morphological, biochemical and biomechanical study in vitro.
    Ma RX; Li RF; Deng XQ; Qiao RQ; Li JK; Song KX; Ji SL; Hu YC
    Cell Tissue Bank; 2024 Jun; 25(2):427-442. PubMed ID: 36797536
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.