These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
111 related articles for article (PubMed ID: 16889527)
41. Candidate bone-tissue-engineered product based on human-bone-derived cells and polyurethane scaffold. Woźniak P; Bil M; Ryszkowska J; Wychowański P; Wróbel E; Ratajska A; Hoser G; Przybylski J; Kurzydłowski KJ; Lewandowska-Szumieł M Acta Biomater; 2010 Jul; 6(7):2484-93. PubMed ID: 19837193 [TBL] [Abstract][Full Text] [Related]
42. Novel chitosan/collagen scaffold containing transforming growth factor-beta1 DNA for periodontal tissue engineering. Zhang Y; Cheng X; Wang J; Wang Y; Shi B; Huang C; Yang X; Liu T Biochem Biophys Res Commun; 2006 May; 344(1):362-9. PubMed ID: 16600180 [TBL] [Abstract][Full Text] [Related]
44. Cultivation of human bone marrow stromal cells on three-dimensional scaffolds of mineralized collagen: influence of seeding density on colonization, proliferation and osteogenic differentiation. Lode A; Bernhardt A; Gelinsky M J Tissue Eng Regen Med; 2008 Oct; 2(7):400-7. PubMed ID: 18756590 [TBL] [Abstract][Full Text] [Related]
46. Osteogenic activity of nanonized pearl powder/poly (lactide-co-glycolide) composite scaffolds for bone tissue engineering. Yang YL; Chang CH; Huang CC; Kao WM; Liu WC; Liu HW Biomed Mater Eng; 2014; 24(1):979-85. PubMed ID: 24211987 [TBL] [Abstract][Full Text] [Related]
47. Proliferation of meniscal fibrochondrocytes cultured on a new polyurethane scaffold is stimulated by TGF-β. de Mulder EL; Hannink G; Giele M; Verdonschot N; Buma P J Biomater Appl; 2013 Jan; 27(5):617-26. PubMed ID: 21926150 [TBL] [Abstract][Full Text] [Related]
48. Electromagnetic stimulation to optimize the bone regeneration capacity of gelatin-based cryogels. Fassina L; Saino E; Visai L; Schelfhout J; Dierick M; Van Hoorebeke L; Dubruel P; Benazzo F; Magenes G; Van Vlierberghe S Int J Immunopathol Pharmacol; 2012; 25(1):165-74. PubMed ID: 22507329 [TBL] [Abstract][Full Text] [Related]
49. In vitro evaluation of elastin-like polypeptide-collagen composite scaffold for bone tissue engineering. Amruthwar SS; Janorkar AV Dent Mater; 2013 Feb; 29(2):211-20. PubMed ID: 23127995 [TBL] [Abstract][Full Text] [Related]
50. Chondrogenesis in perfusion bioreactors using porous silk scaffolds and hESC-derived MSCs. Tiğli RS; Cannizaro C; Gümüşderelioğlu M; Kaplan DL J Biomed Mater Res A; 2011 Jan; 96(1):21-8. PubMed ID: 20949478 [TBL] [Abstract][Full Text] [Related]
51. Flow perfusion culture of marrow stromal cells seeded on porous biphasic calcium phosphate ceramics. Holtorf HL; Sheffield TL; Ambrose CG; Jansen JA; Mikos AG Ann Biomed Eng; 2005 Sep; 33(9):1238-48. PubMed ID: 16133930 [TBL] [Abstract][Full Text] [Related]
52. Functional characterization of human coronary artery smooth muscle cells under cyclic mechanical strain in a degradable polyurethane scaffold. Sharifpoor S; Simmons CA; Labow RS; Paul Santerre J Biomaterials; 2011 Jul; 32(21):4816-29. PubMed ID: 21463894 [TBL] [Abstract][Full Text] [Related]
53. Extracellular matrix formation and mineralization on a phosphate-free porous bioactive glass scaffold using primary human osteoblast (HOB) cells. Jones JR; Tsigkou O; Coates EE; Stevens MM; Polak JM; Hench LL Biomaterials; 2007 Mar; 28(9):1653-63. PubMed ID: 17175022 [TBL] [Abstract][Full Text] [Related]
54. Bone morphogenetic protein-2 and transforming growth factor-beta2 interact to modulate human bone marrow stromal cell proliferation and differentiation. Fromigué O; Marie PJ; Lomri A J Cell Biochem; 1998 Mar; 68(4):411-26. PubMed ID: 9493905 [TBL] [Abstract][Full Text] [Related]
55. Formation of three-dimensional cell/polymer constructs for bone tissue engineering in a spinner flask and a rotating wall vessel bioreactor. Sikavitsas VI; Bancroft GN; Mikos AG J Biomed Mater Res; 2002 Oct; 62(1):136-48. PubMed ID: 12124795 [TBL] [Abstract][Full Text] [Related]
56. Effects of pulsatile bioreactor culture on vascular smooth muscle cells seeded on electrospun poly (lactide-co-ε-caprolactone) scaffold. Mun CH; Jung Y; Kim SH; Kim HC; Kim SH Artif Organs; 2013 Dec; 37(12):E168-78. PubMed ID: 23834728 [TBL] [Abstract][Full Text] [Related]
57. Seeding bioreactor-produced embryonic stem cell-derived cardiomyocytes on different porous, degradable, polyurethane scaffolds reveals the effect of scaffold architecture on cell morphology. Fromstein JD; Zandstra PW; Alperin C; Rockwood D; Rabolt JF; Woodhouse KA Tissue Eng Part A; 2008 Mar; 14(3):369-78. PubMed ID: 18333789 [TBL] [Abstract][Full Text] [Related]
58. Use of rapidly mineralising osteoblasts and short periods of mechanical loading to accelerate matrix maturation in 3D scaffolds. Sittichockechaiwut A; Scutt AM; Ryan AJ; Bonewald LF; Reilly GC Bone; 2009 May; 44(5):822-9. PubMed ID: 19442630 [TBL] [Abstract][Full Text] [Related]
59. Regulation of bone matrix protein expression and induction of differentiation of human osteoblasts and human bone marrow stromal cells by bone morphogenetic protein-2. Lecanda F; Avioli LV; Cheng SL J Cell Biochem; 1997 Dec; 67(3):386-96. PubMed ID: 9361193 [TBL] [Abstract][Full Text] [Related]
60. Scaffold preferences of mesenchymal stromal cells and adipose-derived stem cells from green fluorescent protein transgenic mice influence the tissue engineering of bone. Wittenburg G; Flade V; Garbe AI; Lauer G; Labudde D Br J Oral Maxillofac Surg; 2014 May; 52(5):409-14. PubMed ID: 24685477 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]