BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

185 related articles for article (PubMed ID: 16889826)

  • 21. X-ray diffraction on spider silk during controlled extrusion under a synchrotron radiation X-ray beam.
    Riekel C; Madsen B; Knight D; Vollrath F
    Biomacromolecules; 2000; 1(4):622-6. PubMed ID: 11710191
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Probing the elastic nature of spider silk in pursuit of the next designer fiber.
    Brooks AE; Lewis RV
    Biomed Sci Instrum; 2004; 40():232-7. PubMed ID: 15133963
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Relationships between supercontraction and mechanical properties of spider silk.
    Liu Y; Shao Z; Vollrath F
    Nat Mater; 2005 Dec; 4(12):901-5. PubMed ID: 16299506
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Variation of mechanical properties with amino acid content in the silk of Nephila clavipes.
    Zax DB; Armanios DE; Horak S; Brodowski C; Yang Z
    Biomacromolecules; 2004; 5(3):732-8. PubMed ID: 15132654
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Conformational and orientational transformation of silk proteins in the major ampullate gland of Nephila clavipes spiders.
    Lefèvre T; Boudreault S; Cloutier C; Pézolet M
    Biomacromolecules; 2008 Sep; 9(9):2399-407. PubMed ID: 18702545
    [TBL] [Abstract][Full Text] [Related]  

  • 26. In situ azimuthal rotation device for linear dichroism measurements in scanning transmission x-ray microscopy.
    Hernández-Cruz D; Hitchcock AP; Tyliszczak T; Rousseau ME; Pézolet M
    Rev Sci Instrum; 2007 Mar; 78(3):033703. PubMed ID: 17411187
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Influence of CO2 on the micro-structural properties of spider dragline silk: X-ray microdiffraction results.
    Riekel C; Rössle M; Sapede D; Vollrath F
    Naturwissenschaften; 2004 Jan; 91(1):30-3. PubMed ID: 14740101
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Silken toolkits: biomechanics of silk fibers spun by the orb web spider Argiope argentata (Fabricius 1775).
    Blackledge TA; Hayashi CY
    J Exp Biol; 2006 Jul; 209(Pt 13):2452-61. PubMed ID: 16788028
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Local tolerance to spider silks and protein polymers in vivo.
    Vollrath F; Barth P; Basedow A; Engström W; List H
    In Vivo; 2002; 16(4):229-34. PubMed ID: 12224131
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Spider silk aging: initial improvement in a high performance material followed by slow degradation.
    Agnarsson I; Boutry C; Blackledge TA
    J Exp Zool A Ecol Genet Physiol; 2008 Oct; 309(8):494-504. PubMed ID: 18626974
    [TBL] [Abstract][Full Text] [Related]  

  • 31. New internal structure of spider dragline silk revealed by atomic force microscopy.
    Li SF; McGhie AJ; Tang SL
    Biophys J; 1994 Apr; 66(4):1209-12. PubMed ID: 8038392
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Total x-ray scattering of spider dragline silk.
    Benmore CJ; Izdebski T; Yarger JL
    Phys Rev Lett; 2012 Apr; 108(17):178102. PubMed ID: 22680907
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Unexpected behavior of irradiated spider silk links conformational freedom to mechanical performance.
    Perea GB; Solanas C; Plaza GR; Guinea GV; Jorge I; Vázquez J; Pérez Mateos JM; Marí-Buyé N; Elices M; Pérez-Rigueiro J
    Soft Matter; 2015 Jun; 11(24):4868-78. PubMed ID: 25994594
    [TBL] [Abstract][Full Text] [Related]  

  • 34. An Australian webspinner species makes the finest known insect silk fibers.
    Okada S; Weisman S; Trueman HE; Mudie ST; Haritos VS; Sutherland TD
    Int J Biol Macromol; 2008 Oct; 43(3):271-5. PubMed ID: 18619485
    [TBL] [Abstract][Full Text] [Related]  

  • 35. N-terminal nonrepetitive domain common to dragline, flagelliform, and cylindriform spider silk proteins.
    Rising A; Hjälm G; Engström W; Johansson J
    Biomacromolecules; 2006 Nov; 7(11):3120-4. PubMed ID: 17096540
    [TBL] [Abstract][Full Text] [Related]  

  • 36. How super is supercontraction? Persistent versus cyclic responses to humidity in spider dragline silk.
    Blackledge TA; Boutry C; Wong SC; Baji A; Dhinojwala A; Sahni V; Agnarsson I
    J Exp Biol; 2009 Jul; 212(Pt 13):1981-9. PubMed ID: 19525422
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Silk fibers and silk-producing organs of Harpactea rubicunda (C. L. Koch 1838) (Araneae, Dysderidae).
    Hajer J; Malý J; Reháková D
    Microsc Res Tech; 2013 Jan; 76(1):28-35. PubMed ID: 23034869
    [TBL] [Abstract][Full Text] [Related]  

  • 38. A model for the structure of the C-terminal domain of dragline spider silk and the role of its conserved cysteine.
    Ittah S; Michaeli A; Goldblum A; Gat U
    Biomacromolecules; 2007 Sep; 8(9):2768-73. PubMed ID: 17696395
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Investigation of the nanofibrillar morphology in silk fibers by small angle X-ray scattering and atomic force microscopy.
    Miller LD; Putthanarat S; Eby RK; Adams WW
    Int J Biol Macromol; 1999; 24(2-3):159-65. PubMed ID: 10342760
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Mechanism of silk processing in insects and spiders.
    Jin HJ; Kaplan DL
    Nature; 2003 Aug; 424(6952):1057-61. PubMed ID: 12944968
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.