These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

148 related articles for article (PubMed ID: 16889898)

  • 1. Emerging applications for phospho-proteomics in cancer molecular therapeutics.
    Moran MF; Tong J; Taylor P; Ewing RM
    Biochim Biophys Acta; 2006 Dec; 1766(2):230-41. PubMed ID: 16889898
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Phosphoproteomics and cancer research.
    Ashman K; Villar EL
    Clin Transl Oncol; 2009 Jun; 11(6):356-62. PubMed ID: 19531450
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mass spectrometry-based proteomics: from cancer biology to protein biomarkers, drug targets, and clinical applications.
    Jimenez CR; Verheul HM
    Am Soc Clin Oncol Educ Book; 2014; ():e504-10. PubMed ID: 24857147
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The opportunities and challenges of personalized genome-based molecular therapies for cancer: targets, technologies, and molecular chaperones.
    Workman P
    Cancer Chemother Pharmacol; 2003 Jul; 52 Suppl 1():S45-56. PubMed ID: 12819933
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Global and site-specific quantitative phosphoproteomics: principles and applications.
    Macek B; Mann M; Olsen JV
    Annu Rev Pharmacol Toxicol; 2009; 49():199-221. PubMed ID: 18834307
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Methods for investigation of targeted kinase inhibitor therapy using chemical proteomics and phosphorylation profiling.
    Fang B; Haura EB; Smalley KS; Eschrich SA; Koomen JM
    Biochem Pharmacol; 2010 Sep; 80(5):739-47. PubMed ID: 20361944
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Phosphoproteomics for oncology discovery and treatment.
    Stern DF
    Expert Opin Ther Targets; 2005 Aug; 9(4):851-60. PubMed ID: 16083347
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Phosphoproteomics by mass spectrometry and classical protein chemistry approaches.
    Salih E
    Mass Spectrom Rev; 2005; 24(6):828-46. PubMed ID: 15538747
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Identification and quantitation of signal molecule-dependent protein phosphorylation.
    Groen A; Thomas L; Lilley K; Marondedze C
    Methods Mol Biol; 2013; 1016():121-37. PubMed ID: 23681576
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Phosphoproteomics-based network medicine.
    Liu Z; Wang Y; Xue Y
    FEBS J; 2013 Nov; 280(22):5696-704. PubMed ID: 23751130
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Combining Metabolic ¹⁵N Labeling with Improved Tandem MOAC for Enhanced Probing of the Phosphoproteome.
    Thomas M; Huck N; Hoehenwarter W; Conrath U; Beckers GJ
    Methods Mol Biol; 2015; 1306():81-96. PubMed ID: 25930695
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Simultaneous quantification of protein phosphorylation sites using liquid chromatography-tandem mass spectrometry-based targeted proteomics: a linear algebra approach for isobaric phosphopeptides.
    Xu F; Yang T; Sheng Y; Zhong T; Yang M; Chen Y
    J Proteome Res; 2014 Dec; 13(12):5452-60. PubMed ID: 25403019
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mass spectrometry-based clinical proteomics: head-and-neck cancer biomarkers and drug-targets discovery.
    Matta A; Ralhan R; DeSouza LV; Siu KW
    Mass Spectrom Rev; 2010; 29(6):945-61. PubMed ID: 20945361
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Catch me if you can: mass spectrometry-based phosphoproteomics and quantification strategies.
    Eyrich B; Sickmann A; Zahedi RP
    Proteomics; 2011 Feb; 11(4):554-70. PubMed ID: 21226000
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Measurement of protein phosphorylation stoichiometry by selected reaction monitoring mass spectrometry.
    Jin LL; Tong J; Prakash A; Peterman SM; St-Germain JR; Taylor P; Trudel S; Moran MF
    J Proteome Res; 2010 May; 9(5):2752-61. PubMed ID: 20205385
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Dual phosphoproteomics and chemical proteomics analysis of erlotinib and gefitinib interference in acute myeloid leukemia cells.
    Weber C; Schreiber TB; Daub H
    J Proteomics; 2012 Feb; 75(4):1343-56. PubMed ID: 22115753
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Identification and validation of phospho-SRC, a novel and potential pharmacodynamic biomarker for dasatinib (SPRYCEL), a multi-targeted kinase inhibitor.
    Luo FR; Barrett YC; Yang Z; Camuso A; McGlinchey K; Wen ML; Smykla R; Fager K; Wild R; Palme H; Galbraith S; Blackwood-Chirchir A; Lee FY
    Cancer Chemother Pharmacol; 2008 Nov; 62(6):1065-74. PubMed ID: 18301894
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Harnessing the power of proteomics for identification of oncogenic, druggable signalling pathways in cancer.
    Murray HC; Dun MD; Verrills NM
    Expert Opin Drug Discov; 2017 May; 12(5):431-447. PubMed ID: 28286965
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Pathway-based identification of biomarkers for targeted therapeutics: personalized oncology with PI3K pathway inhibitors.
    Andersen JN; Sathyanarayanan S; Di Bacco A; Chi A; Zhang T; Chen AH; Dolinski B; Kraus M; Roberts B; Arthur W; Klinghoffer RA; Gargano D; Li L; Feldman I; Lynch B; Rush J; Hendrickson RC; Blume-Jensen P; Paweletz CP
    Sci Transl Med; 2010 Aug; 2(43):43ra55. PubMed ID: 20686178
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Global proteomics profiling improves drug sensitivity prediction: results from a multi-omics, pan-cancer modeling approach.
    Ali M; Khan SA; Wennerberg K; Aittokallio T
    Bioinformatics; 2018 Apr; 34(8):1353-1362. PubMed ID: 29186355
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.