BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

153 related articles for article (PubMed ID: 16889898)

  • 1. Emerging applications for phospho-proteomics in cancer molecular therapeutics.
    Moran MF; Tong J; Taylor P; Ewing RM
    Biochim Biophys Acta; 2006 Dec; 1766(2):230-41. PubMed ID: 16889898
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Phosphoproteomics and cancer research.
    Ashman K; Villar EL
    Clin Transl Oncol; 2009 Jun; 11(6):356-62. PubMed ID: 19531450
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mass spectrometry-based proteomics: from cancer biology to protein biomarkers, drug targets, and clinical applications.
    Jimenez CR; Verheul HM
    Am Soc Clin Oncol Educ Book; 2014; ():e504-10. PubMed ID: 24857147
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The opportunities and challenges of personalized genome-based molecular therapies for cancer: targets, technologies, and molecular chaperones.
    Workman P
    Cancer Chemother Pharmacol; 2003 Jul; 52 Suppl 1():S45-56. PubMed ID: 12819933
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Global and site-specific quantitative phosphoproteomics: principles and applications.
    Macek B; Mann M; Olsen JV
    Annu Rev Pharmacol Toxicol; 2009; 49():199-221. PubMed ID: 18834307
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Methods for investigation of targeted kinase inhibitor therapy using chemical proteomics and phosphorylation profiling.
    Fang B; Haura EB; Smalley KS; Eschrich SA; Koomen JM
    Biochem Pharmacol; 2010 Sep; 80(5):739-47. PubMed ID: 20361944
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Phosphoproteomics for oncology discovery and treatment.
    Stern DF
    Expert Opin Ther Targets; 2005 Aug; 9(4):851-60. PubMed ID: 16083347
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Phosphoproteomics by mass spectrometry and classical protein chemistry approaches.
    Salih E
    Mass Spectrom Rev; 2005; 24(6):828-46. PubMed ID: 15538747
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Identification and quantitation of signal molecule-dependent protein phosphorylation.
    Groen A; Thomas L; Lilley K; Marondedze C
    Methods Mol Biol; 2013; 1016():121-37. PubMed ID: 23681576
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Phosphoproteomics-based network medicine.
    Liu Z; Wang Y; Xue Y
    FEBS J; 2013 Nov; 280(22):5696-704. PubMed ID: 23751130
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Combining Metabolic ¹⁵N Labeling with Improved Tandem MOAC for Enhanced Probing of the Phosphoproteome.
    Thomas M; Huck N; Hoehenwarter W; Conrath U; Beckers GJ
    Methods Mol Biol; 2015; 1306():81-96. PubMed ID: 25930695
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Simultaneous quantification of protein phosphorylation sites using liquid chromatography-tandem mass spectrometry-based targeted proteomics: a linear algebra approach for isobaric phosphopeptides.
    Xu F; Yang T; Sheng Y; Zhong T; Yang M; Chen Y
    J Proteome Res; 2014 Dec; 13(12):5452-60. PubMed ID: 25403019
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mass spectrometry-based clinical proteomics: head-and-neck cancer biomarkers and drug-targets discovery.
    Matta A; Ralhan R; DeSouza LV; Siu KW
    Mass Spectrom Rev; 2010; 29(6):945-61. PubMed ID: 20945361
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Catch me if you can: mass spectrometry-based phosphoproteomics and quantification strategies.
    Eyrich B; Sickmann A; Zahedi RP
    Proteomics; 2011 Feb; 11(4):554-70. PubMed ID: 21226000
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Measurement of protein phosphorylation stoichiometry by selected reaction monitoring mass spectrometry.
    Jin LL; Tong J; Prakash A; Peterman SM; St-Germain JR; Taylor P; Trudel S; Moran MF
    J Proteome Res; 2010 May; 9(5):2752-61. PubMed ID: 20205385
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Dual phosphoproteomics and chemical proteomics analysis of erlotinib and gefitinib interference in acute myeloid leukemia cells.
    Weber C; Schreiber TB; Daub H
    J Proteomics; 2012 Feb; 75(4):1343-56. PubMed ID: 22115753
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Identification and validation of phospho-SRC, a novel and potential pharmacodynamic biomarker for dasatinib (SPRYCEL), a multi-targeted kinase inhibitor.
    Luo FR; Barrett YC; Yang Z; Camuso A; McGlinchey K; Wen ML; Smykla R; Fager K; Wild R; Palme H; Galbraith S; Blackwood-Chirchir A; Lee FY
    Cancer Chemother Pharmacol; 2008 Nov; 62(6):1065-74. PubMed ID: 18301894
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Harnessing the power of proteomics for identification of oncogenic, druggable signalling pathways in cancer.
    Murray HC; Dun MD; Verrills NM
    Expert Opin Drug Discov; 2017 May; 12(5):431-447. PubMed ID: 28286965
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Pathway-based identification of biomarkers for targeted therapeutics: personalized oncology with PI3K pathway inhibitors.
    Andersen JN; Sathyanarayanan S; Di Bacco A; Chi A; Zhang T; Chen AH; Dolinski B; Kraus M; Roberts B; Arthur W; Klinghoffer RA; Gargano D; Li L; Feldman I; Lynch B; Rush J; Hendrickson RC; Blume-Jensen P; Paweletz CP
    Sci Transl Med; 2010 Aug; 2(43):43ra55. PubMed ID: 20686178
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Global proteomics profiling improves drug sensitivity prediction: results from a multi-omics, pan-cancer modeling approach.
    Ali M; Khan SA; Wennerberg K; Aittokallio T
    Bioinformatics; 2018 Apr; 34(8):1353-1362. PubMed ID: 29186355
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.