BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

379 related articles for article (PubMed ID: 16890467)

  • 41. Selection on increased intrinsic growth rates in coho salmon, Oncorhynchus kisutch.
    Sundström LF; Lõhmus M; Devlin RH
    Evolution; 2005 Jul; 59(7):1560-9. PubMed ID: 16153041
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Effects of hatchery rearing on Florida largemouth bass Micropterus floridanus resource allocation and performance under semi-natural conditions.
    Garlock TM; Monk CT; Lorenzen K; Matthews MD; St Mary CM
    J Fish Biol; 2014 Dec; 85(6):1830-42. PubMed ID: 25257181
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Developmental stability and environmental stress in Salmo salar (Atlantic salmon).
    Vøllestad LA; Hindar K
    Heredity (Edinb); 1997 Feb; 78 ( Pt 2)():215-22. PubMed ID: 9054692
    [TBL] [Abstract][Full Text] [Related]  

  • 44. First report of erythrocytic inclusion body syndrome (EIBS) in chinook salmon Oncorhynchus tshawytscha in Alaska, USA.
    Meyers TR
    Dis Aquat Organ; 2007 Jun; 76(2):169-72. PubMed ID: 17760390
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Quantitative genetic and translocation experiments reveal genotype-by-environment effects on juvenile life-history traits in two populations of Chinook salmon (Oncorhynchus tshawytscha).
    Evans ML; Neff BD; Heath DD
    J Evol Biol; 2010 Apr; 23(4):687-98. PubMed ID: 20102438
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Elevation of gene expression for salmon gonadotropin-releasing hormone in discrete brain loci of prespawning chum salmon during upstream migration.
    Onuma T; Higa M; Ando H; Ban M; Urano A
    J Neurobiol; 2005 May; 63(2):126-45. PubMed ID: 15702474
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Reconciling fish and farms: Methods for managing California rice fields as salmon habitat.
    Holmes EJ; Saffarinia P; Rypel AL; Bell-Tilcock MN; Katz JV; Jeffres CA
    PLoS One; 2021; 16(2):e0237686. PubMed ID: 33626050
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Antibody-producing cells correlated to body weight in juvenile chinook salmon (Oncorhynchus tshawytscha) acclimated to optimal and elevated temperatures.
    Harrahy LN; Schreck CB; Maule AG
    Fish Shellfish Immunol; 2001 Nov; 11(8):653-9. PubMed ID: 11759036
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Genomic evidence for domestication selection in three hatchery populations of Chinook salmon,
    Howe NS; Hale MC; Waters CD; Schaal SM; Shedd KR; Larson WA
    Evol Appl; 2024 Feb; 17(2):e13656. PubMed ID: 38357359
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Environmental endocrinology of salmon smoltification.
    Björnsson BT; Stefansson SO; McCormick SD
    Gen Comp Endocrinol; 2011 Jan; 170(2):290-8. PubMed ID: 20627104
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Increased mitochondrial DNA diversity in ancient Columbia River basin Chinook salmon Oncorhynchus tshawytscha.
    Johnson BM; Kemp BM; Thorgaard GH
    PLoS One; 2018; 13(1):e0190059. PubMed ID: 29320518
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Human influence on the spatial structure of threatened Pacific salmon metapopulations.
    Fullerton AH; Lindley ST; Pess GR; Feist BE; Steel EA; McElhany P
    Conserv Biol; 2011 Oct; 25(5):932-44. PubMed ID: 21797926
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Neurobiology of Wild and Hatchery-Reared Atlantic Salmon: How Nurture Drives Neuroplasticity.
    Mes D; von Krogh K; Gorissen M; Mayer I; Vindas MA
    Front Behav Neurosci; 2018; 12():210. PubMed ID: 30254575
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Offspring of first-generation hatchery steelhead trout (Oncorhynchus mykiss) grow faster in the hatchery than offspring of wild fish, but survive worse in the wild: Possible mechanisms for inadvertent domestication and fitness loss in hatchery salmon.
    Blouin MS; Wrey MC; Bollmann SR; Skaar JC; Twibell RG; Fuentes C
    PLoS One; 2021; 16(12):e0257407. PubMed ID: 34914737
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Stable isotope tracing of trout hatchery carbon to sediments and foodwebs of limestone spring creeks.
    Hurd TM; Jesic S; Jerin JL; Fuller NW; Miller D
    Sci Total Environ; 2008 Nov; 405(1-3):161-72. PubMed ID: 18674799
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Estimating Common Growth Patterns in Juvenile Chinook Salmon (Oncorhynchus tshawytscha) from Diverse Genetic Stocks and a Large Spatial Extent.
    Goertler PA; Scheuerell MD; Simenstad CA; Bottom DL
    PLoS One; 2016; 11(10):e0162121. PubMed ID: 27695094
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Modeling the potential impacts of climate change on Pacific salmon culture programs: an example at Winthrop National Fish Hatchery.
    Hanson KC; Peterson DP
    Environ Manage; 2014 Sep; 54(3):433-48. PubMed ID: 24993792
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Mortality threshold for juvenile Chinook salmon Oncorhynchus tshawytscha in an epidemiological model of Ceratomyxa shasta.
    Ray RA; Rossignol PA; Bartholomew JL
    Dis Aquat Organ; 2010 Dec; 93(1):63-70. PubMed ID: 21290897
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Rapid evolution of egg size in captive salmon.
    Heath DD; Heath JW; Bryden CA; Johnson RM; Fox CW
    Science; 2003 Mar; 299(5613):1738-40. PubMed ID: 12637746
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Cell density and intracellular translocation of glucocorticoid receptor-immunoreactive neurons in the kokanee salmon (Oncorhynchus nerka kennerlyi) brain, with an emphasis on the olfactory system.
    Carruth LL; Jones RE; Norris DO
    Gen Comp Endocrinol; 2000 Jan; 117(1):66-76. PubMed ID: 10620424
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 19.