BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

166 related articles for article (PubMed ID: 16890580)

  • 1. Association of enzyme and transporter genotypes with the pharmacokinetics of imatinib.
    Gardner ER; Burger H; van Schaik RH; van Oosterom AT; de Bruijn EA; Guetens G; Prenen H; de Jong FA; Baker SD; Bates SE; Figg WD; Verweij J; Sparreboom A; Nooter K
    Clin Pharmacol Ther; 2006 Aug; 80(2):192-201. PubMed ID: 16890580
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Association of ABCG2 polymorphism with clinical efficacy of imatinib in patients with gastrointestinal stromal tumor.
    Koo DH; Ryu MH; Ryoo BY; Beck MY; Na YS; Shin JG; Lee SS; Kim EY; Kang YK
    Cancer Chemother Pharmacol; 2015 Jan; 75(1):173-82. PubMed ID: 25417047
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Association of genetic polymorphisms in the influx transporter SLCO1B3 and the efflux transporter ABCB1 with imatinib pharmacokinetics in patients with chronic myeloid leukemia.
    Yamakawa Y; Hamada A; Nakashima R; Yuki M; Hirayama C; Kawaguchi T; Saito H
    Ther Drug Monit; 2011 Apr; 33(2):244-50. PubMed ID: 21311410
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Influence of enzyme and transporter polymorphisms on trough imatinib concentration and clinical response in chronic myeloid leukemia patients.
    Seong SJ; Lim M; Sohn SK; Moon JH; Oh SJ; Kim BS; Ryoo HM; Chung JS; Joo YD; Bang SM; Jung CW; Kim DH; Park SY; Yoon SS; Kim I; Lee HG; Won JH; Min YH; Cheong JW; Park JS; Eom KS; Hyun MS; Kim MK; Kim H; Park MR; Park J; Kim CS; Kim HJ; Kim YK; Park EK; Zang DY; Jo DY; Lee HW; Yoon YR
    Ann Oncol; 2013 Mar; 24(3):756-60. PubMed ID: 23117072
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Association of genotypes and haplotypes of multi-drug transporter genes ABCB1 and ABCG2 with clinical response to imatinib mesylate in chronic myeloid leukemia patients.
    Au A; Aziz Baba A; Goh AS; Wahid Fadilah SA; Teh A; Rosline H; Ankathil R
    Biomed Pharmacother; 2014 Apr; 68(3):343-9. PubMed ID: 24581936
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Influence of CYP3A5 and drug transporter polymorphisms on imatinib trough concentration and clinical response among patients with chronic phase chronic myeloid leukemia.
    Takahashi N; Miura M; Scott SA; Kagaya H; Kameoka Y; Tagawa H; Saitoh H; Fujishima N; Yoshioka T; Hirokawa M; Sawada K
    J Hum Genet; 2010 Nov; 55(11):731-7. PubMed ID: 20720558
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Irinotecan pathway genotype analysis to predict pharmacokinetics.
    Mathijssen RH; Marsh S; Karlsson MO; Xie R; Baker SD; Verweij J; Sparreboom A; McLeod HL
    Clin Cancer Res; 2003 Aug; 9(9):3246-53. PubMed ID: 12960109
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Chronic imatinib mesylate exposure leads to reduced intracellular drug accumulation by induction of the ABCG2 (BCRP) and ABCB1 (MDR1) drug transport pumps.
    Burger H; van Tol H; Brok M; Wiemer EA; de Bruijn EA; Guetens G; de Boeck G; Sparreboom A; Verweij J; Nooter K
    Cancer Biol Ther; 2005 Jul; 4(7):747-52. PubMed ID: 15970668
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The effect of Bcrp1 (Abcg2) on the in vivo pharmacokinetics and brain penetration of imatinib mesylate (Gleevec): implications for the use of breast cancer resistance protein and P-glycoprotein inhibitors to enable the brain penetration of imatinib in patients.
    Breedveld P; Pluim D; Cipriani G; Wielinga P; van Tellingen O; Schinkel AH; Schellens JH
    Cancer Res; 2005 Apr; 65(7):2577-82. PubMed ID: 15805252
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The tyrosine kinase inhibitor imatinib mesylate enhances the efficacy of photodynamic therapy by inhibiting ABCG2.
    Liu W; Baer MR; Bowman MJ; Pera P; Zheng X; Morgan J; Pandey RA; Oseroff AR
    Clin Cancer Res; 2007 Apr; 13(8):2463-70. PubMed ID: 17438106
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Pharmacokinetic resistance to imatinib mesylate: role of the ABC drug pumps ABCG2 (BCRP) and ABCB1 (MDR1) in the oral bioavailability of imatinib.
    Burger H; Nooter K
    Cell Cycle; 2004 Dec; 3(12):1502-5. PubMed ID: 15611623
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Influence of CYP3A4 inhibition on the steady-state pharmacokinetics of imatinib.
    van Erp NP; Gelderblom H; Karlsson MO; Li J; Zhao M; Ouwerkerk J; Nortier JW; Guchelaar HJ; Baker SD; Sparreboom A
    Clin Cancer Res; 2007 Dec; 13(24):7394-400. PubMed ID: 18094422
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A new intestinal cell culture model to discriminate the relative contribution of P-gp and BCRP on transport of substrates such as imatinib.
    Graber-Maier A; Gutmann H; Drewe J
    Mol Pharm; 2010 Oct; 7(5):1618-28. PubMed ID: 20701289
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Clinical relevance of a pharmacogenetic approach using multiple candidate genes to predict response and resistance to imatinib therapy in chronic myeloid leukemia.
    Kim DH; Sriharsha L; Xu W; Kamel-Reid S; Liu X; Siminovitch K; Messner HA; Lipton JH
    Clin Cancer Res; 2009 Jul; 15(14):4750-8. PubMed ID: 19584153
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Association of variant ABCG2 and the pharmacokinetics of epidermal growth factor receptor tyrosine kinase inhibitors in cancer patients.
    Li J; Cusatis G; Brahmer J; Sparreboom A; Robey RW; Bates SE; Hidalgo M; Baker SD
    Cancer Biol Ther; 2007 Mar; 6(3):432-8. PubMed ID: 17312388
    [TBL] [Abstract][Full Text] [Related]  

  • 16. ABC-transporter gene-polymorphisms are potential pharmacogenetic markers for mitoxantrone response in multiple sclerosis.
    Cotte S; von Ahsen N; Kruse N; Huber B; Winkelmann A; Zettl UK; Starck M; König N; Tellez N; Dörr J; Paul F; Zipp F; Lühder F; Koepsell H; Pannek H; Montalban X; Gold R; Chan A
    Brain; 2009 Sep; 132(Pt 9):2517-30. PubMed ID: 19605531
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effect of common CYP3A4 and CYP3A5 variants on the pharmacokinetics of the cytochrome P450 3A phenotyping probe midazolam in cancer patients.
    Lepper ER; Baker SD; Permenter M; Ries N; van Schaik RH; Schenk PW; Price DK; Ahn D; Smith NF; Cusatis G; Ingersoll RG; Bates SE; Mathijssen RH; Verweij J; Figg WD; Sparreboom A
    Clin Cancer Res; 2005 Oct; 11(20):7398-404. PubMed ID: 16243813
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Multidrug resistance proteins in gastrointestinal stromal tumors: site-dependent expression and initial response to imatinib.
    Théou N; Gil S; Devocelle A; Julié C; Lavergne-Slove A; Beauchet A; Callard P; Farinotti R; Le Cesne A; Lemoine A; Faivre-Bonhomme L; Emile JF
    Clin Cancer Res; 2005 Nov; 11(21):7593-8. PubMed ID: 16278376
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Therapeutic drug monitoring of imatinib for chronic myeloid leukemia patients in the chronic phase.
    Takahashi N; Miura M
    Pharmacology; 2011; 87(5-6):241-8. PubMed ID: 21474977
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Influence of CYP3A5*3 and ABCB1 C3435T on clinical outcomes and trough plasma concentrations of imatinib in Nigerians with chronic myeloid leukaemia.
    Adeagbo BA; Bolaji OO; Olugbade TA; Durosinmi MA; Bolarinwa RA; Masimirembwa C
    J Clin Pharm Ther; 2016 Oct; 41(5):546-51. PubMed ID: 27426203
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.