These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
146 related articles for article (PubMed ID: 16891140)
1. Physiological and genetic engineering of cytosolic redox metabolism in Saccharomyces cerevisiae for improved glycerol production. Geertman JM; van Maris AJ; van Dijken JP; Pronk JT Metab Eng; 2006 Nov; 8(6):532-42. PubMed ID: 16891140 [TBL] [Abstract][Full Text] [Related]
2. Metabolic impact of increased NADH availability in Saccharomyces cerevisiae. Hou J; Scalcinati G; Oldiges M; Vemuri GN Appl Environ Microbiol; 2010 Feb; 76(3):851-9. PubMed ID: 20023106 [TBL] [Abstract][Full Text] [Related]
3. Engineering NADH metabolism in Saccharomyces cerevisiae: formate as an electron donor for glycerol production by anaerobic, glucose-limited chemostat cultures. Geertman JM; van Dijken JP; Pronk JT FEMS Yeast Res; 2006 Dec; 6(8):1193-203. PubMed ID: 17156016 [TBL] [Abstract][Full Text] [Related]
4. Metabolic engineering of glycerol production in Saccharomyces cerevisiae. Overkamp KM; Bakker BM; Kötter P; Luttik MA; Van Dijken JP; Pronk JT Appl Environ Microbiol; 2002 Jun; 68(6):2814-21. PubMed ID: 12039737 [TBL] [Abstract][Full Text] [Related]
5. In vivo analysis of the mechanisms for oxidation of cytosolic NADH by Saccharomyces cerevisiae mitochondria. Overkamp KM; Bakker BM; Kötter P; van Tuijl A; de Vries S; van Dijken JP; Pronk JT J Bacteriol; 2000 May; 182(10):2823-30. PubMed ID: 10781551 [TBL] [Abstract][Full Text] [Related]
6. Cytosolic redox metabolism in aerobic chemostat cultures of Saccharomyces cerevisiae. Påhlman IL; Gustafsson L; Rigoulet M; Larsson C Yeast; 2001 May; 18(7):611-20. PubMed ID: 11329172 [TBL] [Abstract][Full Text] [Related]
7. Determination of the cytosolic free NAD/NADH ratio in Saccharomyces cerevisiae under steady-state and highly dynamic conditions. Canelas AB; van Gulik WM; Heijnen JJ Biotechnol Bioeng; 2008 Jul; 100(4):734-43. PubMed ID: 18383140 [TBL] [Abstract][Full Text] [Related]
8. Metabolic flux analysis of a glycerol-overproducing Saccharomyces cerevisiae strain based on GC-MS, LC-MS and NMR-derived C-labelling data. Kleijn RJ; Geertman JM; Nfor BK; Ras C; Schipper D; Pronk JT; Heijnen JJ; van Maris AJ; van Winden WA FEMS Yeast Res; 2007 Mar; 7(2):216-31. PubMed ID: 17132142 [TBL] [Abstract][Full Text] [Related]
9. The Saccharomyces cerevisiae NDE1 and NDE2 genes encode separate mitochondrial NADH dehydrogenases catalyzing the oxidation of cytosolic NADH. Luttik MA; Overkamp KM; Kötter P; de Vries S; van Dijken JP; Pronk JT J Biol Chem; 1998 Sep; 273(38):24529-34. PubMed ID: 9733747 [TBL] [Abstract][Full Text] [Related]
10. Involvement of the external mitochondrial NADH dehydrogenase Nde1 in glycerol metabolism by wild-type and engineered Saccharomyces cerevisiae strains. Aßkamp MR; Klein M; Nevoigt E FEMS Yeast Res; 2019 May; 19(3):. PubMed ID: 30915433 [TBL] [Abstract][Full Text] [Related]
11. Organization and regulation of the cytosolic NADH metabolism in the yeast Saccharomyces cerevisiae. Rigoulet M; Aguilaniu H; Avéret N; Bunoust O; Camougrand N; Grandier-Vazeille X; Larsson C; Pahlman IL; Manon S; Gustafsson L Mol Cell Biochem; 2004; 256-257(1-2):73-81. PubMed ID: 14977171 [TBL] [Abstract][Full Text] [Related]
14. Metabolic impact of redox cofactor perturbations in Saccharomyces cerevisiae. Hou J; Lages NF; Oldiges M; Vemuri GN Metab Eng; 2009; 11(4-5):253-61. PubMed ID: 19446033 [TBL] [Abstract][Full Text] [Related]
15. The effect of increasing NADH availability on the redistribution of metabolic fluxes in Escherichia coli chemostat cultures. Berríos-Rivera SJ; Bennett GN; San KY Metab Eng; 2002 Jul; 4(3):230-7. PubMed ID: 12616692 [TBL] [Abstract][Full Text] [Related]
16. Deletion of glycerol-3-phosphate dehydrogenase genes improved 2,3-butanediol production by reducing glycerol production in pyruvate decarboxylase-deficient Saccharomyces cerevisiae. Kim JW; Lee YG; Kim SJ; Jin YS; Seo JH J Biotechnol; 2019 Oct; 304():31-37. PubMed ID: 31421146 [TBL] [Abstract][Full Text] [Related]
17. Stoichiometry and compartmentation of NADH metabolism in Saccharomyces cerevisiae. Bakker BM; Overkamp KM; van Maris AJ ; Kötter P; Luttik MA; van Dijken JP ; Pronk JT FEMS Microbiol Rev; 2001 Jan; 25(1):15-37. PubMed ID: 11152939 [TBL] [Abstract][Full Text] [Related]
18. Metabolic engineering for high glycerol production by the anaerobic cultures of Saccharomyces cerevisiae. Semkiv MV; Dmytruk KV; Abbas CA; Sibirny AA Appl Microbiol Biotechnol; 2017 Jun; 101(11):4403-4416. PubMed ID: 28280870 [TBL] [Abstract][Full Text] [Related]
19. Effect of alternative NAD+-regenerating pathways on the formation of primary and secondary aroma compounds in a Saccharomyces cerevisiae glycerol-defective mutant. Jain VK; Divol B; Prior BA; Bauer FF Appl Microbiol Biotechnol; 2012 Jan; 93(1):131-41. PubMed ID: 21720823 [TBL] [Abstract][Full Text] [Related]
20. Evolutionary engineering of a glycerol-3-phosphate dehydrogenase-negative, acetate-reducing Saccharomyces cerevisiae strain enables anaerobic growth at high glucose concentrations. Guadalupe-Medina V; Metz B; Oud B; van Der Graaf CM; Mans R; Pronk JT; van Maris AJ Microb Biotechnol; 2014 Jan; 7(1):44-53. PubMed ID: 24004455 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]